DB2 UDB V8.1
SQL Cookbook

Graeme Birchall

DB2 UDB V8.1 Cookbook ©

Preface

Important!

If you didn’t get this document directly from my website, you may have got an older edition.
The book gets changed all the time, so if you want the latest, go to the source. Also, the latest
edition is usually the best book to have, even if you are using an older version of DB2, asthe
examples are often much better.

Disclaimer & Copyright

DISCLAIMER: This document is a best effort on my part. However, | screw up all the time,
so it would be extremely unwise to trust the contentsin its entirety. | certainly don't. And if
you do something silly based on what | say, lifeistough.

COPYRIGHT: Y ou can make as many copies of this book as you wish. And | encourage you
to giveit to others. But you cannot séll it, nor change for it (other than to recover reproduction
costs), nor claim the material as your own, nor replace my name with another. Secondary dis-
tribution for gain is not alowed. Y ou are also encouraged to use the related class notes for
teaching. In this case, you can charge for your time and materials (and your expertise). But
you cannot charge any licensing fee, nor claim an exclusive right of use.

TRADEMARKS: Lots of words in this document, like "DB2", are registered trademarks of
the IBM Corporation. And lots and lots of other words, like "Windows", are registered trade-
marks of the Microsoft Corporation. Adobe Acrobat is aregistered trademark of the Adobe
Corporation.

Tools Used

This book was written on aDell PC that came with oodles or RAM. All testing was done on
DB2 V8.1. Word for Windows was used to write the document. Adobe Acrobat was used to
make the PDF file. As always, the book would have been written in half the time if Word for
Windows wasn't such a bunch of bug-ridden junk.

Book Binding

This book looks best when printed on a doubled sided laser printer and then suitably bound.
To thisend, | did some experiments afew years ago to figure out how to bind books cheaply
using commonly available materials. | came up with what | consider to be a very satisfactory
solution that is fully documented on page 279.

Author / Book

Aut hor: G aene Birchall ©
Address: 1 River Court, Apt 1706
Jersey City NJ 07310-2007
Ph/ Fax: (201)-963-0071
Emai | : G aene_Birchal | @onpuserve. com
Web: http://ourworl d. conmpuserve. conf homepages/ G aene_Bi r chal |

Title: DB2 UDB V8.1 SQ. Cookbook ©
Print: 20 August, 2002

Fname: BOOK08

#pages: 284

Preface 3

Graeme Birchall ©

Author Notes

Book History

This book originally began a series of notes for my own use. After awhile, friends began to
ask for copies, so | decided to tidy everything up and give it away. Over the years, new chap-
ters have been added as DB2 has evolved, and as | have figured out ways to solve new prob-
lems. Hopefully, this process will continue for the foreseeable future.

Why Free

Thisbook is free because | want people to use it. The more people that use it, and the more
that it helps them, then the more inclined | am to keep it up to date. For these reasons, if you
find this book to be useful, please share it with others.

There are several other reasons why the book is free, as opposed to formally published. | want
whatever | put into the public domain to be the best that | can write, and | feel that my current
distribution setup results (in this case) in a better quality product than that for a comparable
published book. What | lack is an editor and a graphic designer to fix my many errors. But |
have avery fast time to print - new editions of this book usually come out within two months
of new versions of DB2 becoming available. And corrections and/or enhancements can be
included almost immediately. Lastly, | am under no pressure to make the book marketable. |
simply include whatever | think might be useful.

Other Free Documents
The following documents are also available for free from my web site:

SAMPLE SQL: The complete text of the SQL statements in this Cookbook are available
inan HTML file. Only thefirst and last few lines of the file have HTML tags, therest is
raw text, so it can easily be cut and paste into other files.

¢ CLASSOVERHEADS: Selected SQL examples from this book have been rewritten as
class overheads. This enables one to use this material to teach DB2 SQL to others. Use
this cookbook as the student notes.

¢ OLDER EDITIONS: Thisbook is rewritten, and usually much improved, with each new
version of DB2. Some of the older editions are available from my website. The others can
be emailed upon request. However, the latest edition is the best, so you should probably
use it, regardless of the version of DB2 that you have.

Answering Questions

Asarule, | do not answer technical questions because | need to have alife. But I'm interested
in hearing about inter esting SQL problems, and also about any errorsin this book. However
you may not get a prompt response, or any response. And if you are obviously an idiot, don't
be surprised if | point out (for free, remember) that you are idiot.

Graeme

4 Author Notes

DB2 UDB V8.1 Cookbook ©

Book Editions

Upload Dates

1996-05-08

1998-02-26

1998-08-19

1998-08-26
1998-09-03
1998-10-24
1998-10-25
1998-12-03

1999-01-25

1999-01-28
1999-02-15

1999-02-16
1999-03-16

1999-05-12

1999-09-16

1999-09-23
1999-10-06
2000-04-12
2000-09-19

2000-09-25
2000-10-26
2001-01-03
2001-02-06
2001-04-11

2001-10-24

2002-03-11
2002-08-20

Preface

First edition of the DB2 V2.1.1 SQL Cookbook was posted to my web site.
Thisversion wasis Postscript Print File format.

The DB2 V2.1.1 SQL Cookbook was converted to an Adobe Acrobat file
and posted to my web site. Some minor cosmetic changes were made.

First edition of the DB2 UDB V5 SQL Cookbook was posted. Every SQL
statement was checked for V5, and there were new chapters on OUTER
JOIN and GROUPBY..

About 20 minor cosmetic defects were corrected in the V5 Cookbook.
Another 30 or so minor defects were corrected in the V5 Cookbook.

The Cookbook was updated for DB2 UDB V5.2.

About twenty minor typos and sundry cosmetic defects were fixed.

IBM published two versions of the V5.2 upgrade. Theinitial edition, which |
had used, evidently had alot of errors. It was replaced within aweek with a
more complete upgrade. This book was based on the later upgrade.

A chapter on Summary Tables (new in the Dec/98 fixpack) was added and
all the SQL was checked for changes.

Some more SQL was added to the new chapter on Summary Tables.

The section of stopping recursive SQL statements was completely rewritten,
and a new section was added on denormalizing hierarchical data structures.
Minor editorial changes were made.

Some bright spark at IBM pointed out that my new and improved section on
stopping recursive SQL was all wrong. Damn. | undid everything.

Minor editorial changes were made, and one new example (on getting multi-
ple counts from one value) was added.

DB2 V6.1 edition. All SQL was rechecked, and there were some minor addi-
tions - especially to summary tables, plus a chapter on "DB2 Dislikes".
Some minor layout changes were made.

Some errors fixed, plus new section on index usage in summary tables.
Some typos fixed, and a couple of new SQL tricks were added.

DB2 V7.1 edition. All SQL was rechecked. The new areas covered are:
OLAP functions (whole chapter), 1SO functions, and identity columns.
Some minor layout changes were made.

More minor layout changes.

Minor layout changes (to match class notes).

Minor changes, mostly involving the RAND function.

Document new featuresin latest fixpack. Also add a new chapter on Identity
Columns and completely rewrite sub-query chapter.

DB2 V7.2 fixpack 4 edition. Tested all SQL and added more examples, plus
anew section on the aggregation function.

Minor changes, mostly to section on precedence rules.

DB2 V8.1 (beta) edition. A few new functions are added, plusthere isanew
section on temporary tables. The Identity Column and Join chapters were
completely rewritten, and the Whine chapter was removed.

DB2 UDB V8.1 Cookbook ©

Table of Contents

Disclaimer & Copyright
Tools Used

Book Binding..
Author / Book

U1 o T G 0} (S
BOOK HISTOTY ..ttt bbbtk ettt a4 h bbb e E £t b e 22 b £ 42 bt oo b4 e h b e e h s e h e e b e e b e e Rt bt bbb nre e
Why Free
Other Free Documents
Answering Questions

2 oTo] gl =lo 11 41 o =PRI 5
(8] o] [oF= Lo I B F=1 (= TSSOSO PSP PSPPSRI 5
TABLE OF CONTENTS cuttttttutuututtssssnssnssmmmmmmmmmmmmmmm 7
INTRODUCTION TO SQL ..eitiiiiiiiiitiiiiiteee e ettt e e e s s sttt e e e e e e e s s bbb e e e e e e e s s s sanbbneeeeaeeeaannns 13
SyYNtaxX DIiagram CONVENTIONSouiiiiiiiiiieit ettt b e bt bt e b e et e e bt eas e e ab e e he e e b b e b b e b e e bt eab e eabeeabeebbesbeesbeeabeenbeens 13
10 I 070] 111 o T =] o1 £ SO PP PPPP PP 13

(D] @ o] 1ot SO ROP PRSPPI
SELECT Statement
FETCH FIRST Clause
Correlation Name.....

Renaming Fields
WWOTKING WL INUILS ...ttt h bbbt e bt et st e hb e e bt e e b e b b e b e e bt e bt e bt esb e e b e an e b s 19

1@ I =T T Lo | =T PSSP PP 20
Basic Predicate
Quantified Predicate
BETWEEN Predicate..
EXISTS Predicate
IN Predicate
LIKE Predicate..
NULL Predicate ...
Precedence Rules

Temporary Tables - INTrOUCTIONooviii e e e e e nnrree e e e e e e s 26
Temporary Tables - iN StAtEMENTiiii e e e e e e e e e e nneaeeeee s 27
Common Table Expression .28
Full-Select ...30
Declared Global TeEMPOrary TaDIES.......cuviiiiiiiiic e e e e 34
CAST EXPIESSION ..ottt ettt ettt ettt e sa et ner e nae e e nne e 36
WALUES ClAUSEeiiiiiiiie ettt ettt ettt ettt ettt e e ekt e e et e e e ab e e e e m bt e e e anb e e e e anbe e e e anbbeeeanbeeeenbeeeennnes 37
CASE EXPIESSION .ttt ettt sh ettt eb e ee e b et e nae e 39
0TI U1V | N U] Lo 0] 43

Introduction....
Column Functions, Definitions..

AVG43
CORRELATIO ...45
COUNT45
COUNT_BIG.. ...46
COVARIANCE46
GROUPING ... A7
MAX........ A7
MIN48
REGRESSION.. ...48

STDDEV

OLAP FUNCTIONS. 51
Introduction...............
The Bad Old Days
OLAP FUNCEIONS, DEFINITIONS ...ttt e e e et e e e e s et e e s e e e s e ea s eeeseearees 54
Ranking Functions....................

Row Numbering Function ..
Aggregation Function

Table of Contents 7

Graeme Birchall ©

SCALAR FUNCTIONS L.uiiiiitiiiii it ee et e ettt e e ettt e e s et s e e e et s e s esbaeesssbaeesssaneesssanaesssranaeees 75
Introduction
Sample Data....

Scalar FUNCLIONS, DEIINITIONS ...uuuuiiiiiiiiiiiiiiiiiitiiiititeieeee e aeeesaeeeasesesessssssssssssssssssssseresareees 75
ABS OF ABSVALooovoieieeieeeeeeeeeees s sees e eeeee e see et s e seee e e e st e e e e s e et n et n e e et 75

DAYOFWEEK_ISO...

DAYOFYEAR..

DEC or DECIMAL ..
DEGREES ...

DECRYPT_BIN and DECRYPT_CHAR....
DIFFERENCE.

DLURLCOMPLETE ..
DLURLPATH ..
DLURLPATHON
DLURLSCHEME....
DLURLSERVER....

GENERATE_UNIQUE.
GETHINT

HEX.
HOUR
IDENTITY_VAL_LOCAL..

INT or INTEGER....
JULIAN_DAY
LCASE or LOWER.
LEFT ..
LENGTH ...

LONG_VARCHAR....
LONG_VARGRAPHIC.

MICROSECOND
MIDNIGHT_SECOND

8 Book Editions

DB2 UDB V8.1 Cookbook ©

MONTHNAME
MULTIPLY_ALT...
NODENUMBER

SINH ...
SMALLINT
SOUNDEX ...

TABLE_NAME
TABLE_SCHEMA....

TIMEST .
TIMESTAMP_FORMAT
TIMESTAMP_ISO
TIMESTAMPDIFF...

TRUNC or TRUNCATE .
TYPE_ID....
TYPE_NAME ...
TYPE_SECHEMA
UCASE or UPPER

VARCHAR_FORMAT
VARGRAPHIC
VEBLOB_CP_LARGE
VEBLOB_CP_LARGE

ORDER BY, GROUP BY, AND HAVINGcctviiiiiiiiiiiiiiii e 121

gL egoTo VTt i o] o ISP OPR PSPPI

[o 1Y = Y
Sample Data
Order by Examples.....

(CTgo U] oI 23V A= Lo Yo B o F- 1V [o o PRSP 123
GROUP BY Sample Data

Simple GROUP BY Statements .
GROUPING SETS Statement
ROLLUP Statement...
CUBE Statement
Complex Grouping Sets - Done Easy .
Group By and Order By .
Group By in Join
COUNT and No Rows

JOINS
Why Joins Matter.
Sample Views

Table of Contents 9

SuUB-QUERY...

Graeme Birchall ©

o TN TS Y] -V SRR PRSI 139
ON vs. WHERE ..

BN oT 1 T 1Y/ o 1= SRR OTPRPTTR 142
Inner Join
Left Outer Join

Right Outer Join..
Full Outer Joins...
Cartesian Product

JOINM NOLES .ttt et e ekt e ekt e ek et e ek bt e e e ekt e e e b e e e nan e e e e e e e e
Using the COALESCE Function
Listing non-matching rows only
Join in SELECT Phrase
Predicates and Joins, a Lesson
Joins - Things to Remember

Sample Tables

SUD-QUETY FIAVOUTS ...coiiiii ittt e bt e e et e e et e e e s anb e e e e snbee e snnbeens
Sub-query SYNtaxcccceeveeveenienveneenns

Correlated vs. Uncorrelated Sub-Queries .

Multi-Field Sub-Queries
Nested Sub-Queries

USQE EXAMPIES ...ttt ettt ettt et 168
True if NONE Match .
True if ANY Match .
True if TEN Match..
True if ALL match

UNION, INTERSECT, AND EXCEPT.. 173

Syntax Diagram
Sample Views

[0 ES7= 1o L= NN (0] 1S TP 174
Union & Union All...
Intersect & Intersect Al
Except & Except All ..
Precedence Rules
Unions and Views

1O L 7 2 Y = 0 = 177
SUMMEATY TADIE TYPES .ttt ettt ettt e e e e ehee e bt eete e bt easeasseeseeas e e e bt e et e e bt eabeeateanseeseeebeeebeeabe e be e bt enbeenteanteaneesneas 177
L1231/ T 4 o T =T 4 g T=T o1 €= L4 o o S 178

DDL Restrictions
Definition Only Summary Tables..
Refresh Deferred Summary Tables.
Refresh Immediate Summary Tables.
Usage Notes and Restrictions..
Multi-table Summary Tables..
Indexes on Summary Tables....

ROI YOUE OWN ..o

Inefficient Triggers
Efficient Triggers

IDENTITY COLUMNS AND SEQUENGCESttt eeiiiittiiiieieeeeeeeeettieseeeeeeeesttsaaaeeeessesssrannaens 195

Identity Columns
Rules and Restrictions
Altering Identity Column Options..
Gaps in the Sequence............cc......
Roll Your Own - no Gaps in Sequence .
IDENTITY_VAL_LOCAL Function......

Sequences
Getting the Sequence Value..
Multi-table Usage.......
Counting Deletes.......
Identity Columns vs. Sequences - a Comparison

RECURSIVE SQL ..ttt ettt s sttt e e e e e st b e e e e e e e s s snbrreneaaaeas

10

Use Recursion To
When (Not) to Use Recursion...

HOW RECUISTON WOTKS .oiiiiiiiiiiiiiiiee ettt e ettt e e e e et e e e e e e et e e e e e e e ennnneeeeeeeeennnnneees
List Dependents of AAA
Notes & Restrictions

Book Editions

DB2 UDB V8.1 Cookbook ©

SAMPIE TADIE DDL & DIML ...ttt bbbttt bbb bbbt e bt e bt e e bt e e bt e b bt ebb e e b e b b e bt e bt e bt et e sae s 211
INEFOAUCTONY RECUISION ..ttt ettt ettt e e sttt e sttt e e s ab e e e sabb e e e sbbeeeabbeeeanbbeaaantbeeeens 212
List all Children #1 .

List all Children #2
List Distinct Children..
Show Item Level
Select Certain Levels.
Select Explicit Level...
Trace a Path - Use Multiple Recursions..
Extraneous Warning Message

Logical HIerarChy FIAVOUTIS.......oo ettt e e e e e e e e e e e e e e e nnnennnees 217
DIVEIGENT HIEFAICRY ...ttt bbbt bt bt ettt e h b e h b4 b bt e b b e b b e b e e bt et e et e e bb e e be e s beesbe e beens

Convergent Hierarchy....
Recursive Hierarchy
Balanced & Unbalanced Hierarchies
Data & Pointer Hierarchies.....

Halting RECUISIVE PrOCESSING .uviiiiiiiiiiiiiie ettt ettt ettt e sib e e e snb e e e snbaeessnneeee e 220
Sample Database .

Stop After "n" Levels..
Stop After "n" Levels - Remove Duplicates
Stop After "n" Levels - Show Data Paths .
Stop After "n" ROWSccovvvvviveiiennns .223
Find all Children, Ignore Data Loops
Find all Children, Mark Data Loops
Find all Data Loops - Only ...

Stop if Data Loops

Working with Other Key Types...... .
Stopping Simple Recursive Statements Using FETCH FIRST code...226
Clean Hierarchies and EffiCient JOINS......c.uii ittt 227
Introduction

Limited Update Solution
Full Update Solution

FUN WITH SQL 1.ttt sttt st te st e et e e ensate s atesaenesteseetesaennane s

Creating SAMPIE DALAcccueiiiiiiiiiiee ettt ettt 233
Create a Row of Data .

Create "n" Rows & Columns of Data...
Linear Data Generation
Tabular Data Generation........
Cosine vs. Degree - Table of Values
Make Reproducible Random Data ...
Make Random Data - Different Ranges ..
Make Random Data - Different Flavours.
Make Random Data - Varying Distribution....
MBAKE TESE TADIE & DIALA......cueetieiieii ettt b et ea e ea bt h b hbehe e b e e bt e b b e bt et e e bt e ab e ebn e s bt e abe e beens

Time-Series Processing.
Find Overlapping Rows
Find Gaps in Time-Series.
Show Each Day in Gap

Other Fun Things
Convert Character to Numeric
Convert Timestamp to Numeric..
Selective Column Output.....
Making Charts Using SQL
Multiple Counts in One Pass ..
Multiple Counts from the Same Row...
Find Missing Rows in Series / Count all Values
Normalize Denormalized Data....
Denormalize Normalized Data
Reversing Field Contents
Stripping Characters......

Query Runs for "n" Seconds...

QUIRKS IN SQL ..ttttiitiie ettt ettt e e e e e s sttt e e e e e s s et bbb e e e e e e e e s s sanbbreeeeaaeeesannrnnes
Trouble with Timestamps
No Rows Maitch
Dumb Date Usage ..
RAND in Predicate..
Date/Time Manipulation....
Use of LIKE on VARCHAR..
Comparing Weeks
DB2 TruNCAES, NOT ROUNGTSciiieitiieiiie ettt e e st et e st e e s ae e e tae e e teeeaaaeeeetsseesaeeassseeassseaasaeeasseeeassaesntasessseeanseeesnraeenneen

Table of Contents 11

Graeme Birchall ©

CASE Checks in Wrong Sequence
Division and Average....
Date Output Order
Ambiguous Cursors
Floating Point Numbers
Legally Incorrect SQL

APPENDIX

DB2 Sample Tables
Class Schedule
Department..
Employee........
Employee Activity
Employee Photo
Employee Resume

Organization
Project...
Sales..

12 Book Editions

DB2 UDB V8.1 Cookbook ©

Introduction to SQL

This chapter contains abasic introduction to DB2 UDB SQL. It aso has numerous examples
illustrating how to use this language to answer particular business problems. However, itis
not meant to be a definitive guide to the language. Please refer to the relevant IBM manuals
for amore detailed description.

Syntax Diagram Conventions

Thisbook uses railroad diagrams to describe the DB2 UDB SQL statements. The following
diagram shows the conventions used.

Start Continue
/ L ALLL Default \
w SELECT - AT an item }

LL DISTINCT J

Resume / Repeat End \

F FROM % table name N
view name LWHERE expressionj_‘
4 { and / or

Mandatory Optional
Figure 1, Syntax Diagram Conventions

Rules

e Upper CasetextisaSQL keyword.

e Italictext is either aplaceholder, or explained el sewhere.
* Backward arrows enable one to repeat parts of the text.

* A branch line going above the main lineis the default.

e A branch line going below the main lineis an optional item.

SQL Components

DB2 Objects

DB2isarelational database that supports avariety of object types. In this section we shall
overview those items which one can obtain data from using SQL.

Table

A tableis an organized set of columns and rows. The number, type, and relative position, of
the various columnsin the table is recorded in the DB2 catalogue. The number of rowsin the
table will fluctuate as datais inserted and deleted.

The CREATE TABLE statement is used to define atable. The following example will define
the EMPLOY EE table, which isfound in the DB2 sample database.

Introduction to SQL 13

Graeme Birchall ©

CREATE TABLE EMPLOYEE

(EMPNO CHARACTER (00006) NOT NULL
, FIRSTNME VARCHAR (00012) NOT NULL
,MDINNT CHARACTER (00001) NOT NULL
, LASTNAME VARCHAR (00015) NOT NULL
, WORKDEPT CHARACTER (00003)

, PHONENO = CHARACTER (00004)

, H REDATE DATE

,JOB CHARACTER (00008)
, EDLEVEL SMVALLI NT NOT NULL
SEX CHARACTER (00001)

. Bl RTHDATE DATE

/SALARY DECIMAL (00009, 02)
. BONUS DECI MAL (00009, 02)
. COWM DECI MAL (00009, 02)

)
DATA CAPTURE NONE;
Figure 2, DB2 sample table - EMPLOYEE

View

A view is another way to look at the datain one or more tables (or other views). For example,
auser of the following view will only see those rows (and certain columns) in the EM-

PLOY EE table where the salary of a particular employee is greater than or equal to the aver-
age sdlary for their particular department.

CREATE VI EW EMPLOYEE_VI EW AS
SELECT A EMPNO, A FIRSTNME, A. SALARY, A WORKDEPT
FROM EMPLOYEE A
WHERE A SALARY >=

(SELECT AVG(B. SALARY)

FROM EMPLOYEE B

WHERE A. WORKDEPT = B. WORKDEPT) ;

Figure 3, DB2 sample view - EMPLOYEE_VIEW

A view need not always refer to an actual table. It may instead contain alist of values:

CREATE VIEW SILLY (Cl, C2, C3)

AS VALUES (11, ' AAA', SMALLINT(22))
, (12, ' BBB', SMALLINT(33))
. (13, 'coc, NULL);

Figure 4, Define a view using a VALUES clause

Selecting from the above view works the same as selecting from atable:

SELECT (C1, C2, C3 ANSVEER

ORDER BY Cl1 ASC, Cl Cc3
11 AAA 22
12 BBB 33
13 CccC -

Figure 5, SELECT from a view that hasits own data

We can go one step further and define aview that begins with a single value that is then ma-
nipulated using SQL to make many other values. For example, the following view, when se-
lected from, will return 10,000 rows. Note however that these rows are not stored anywherein
the database - they are instead created on the fly when the view is queried.

14 SQL Components

DB2 UDB V8.1 Cookbook ©

CREATE VI EW TEST DATA AS
W TH TEMPL (NUML) AS
(VALUES (1)

UNI ON ALL

SELECT NUML + 1

FROM TEMP1

WHERE NUML < 10000)
SELECT *

FROM TEMPL;

Figure 6, Define a view that creates data on the fly
Alias

An diasisan aternate name for atable or aview. Unlike a view, an alias can not contain any
processing logic. No authorization is required to use an dias other than that needed to access
to the underlying table or view.

CREATE ALI AS EMPLOYEE_AL1 FOR EMPLOYEE;
COW T,

CREATE ALIAS EMPLOYEE AL2 FOR EMPLOYEE_ALI;
COW T;
CREATE ALIAS EMPLOYEE_AL3 FOR EMPLOYEE_AL2;
COWM T;

Figure 7, Define three aliases, the latter on the earlier

Neither aview, nor an alias, can be linked in arecursive manner (e.g. V1 pointsto V2, which
points back to VV1). Also, both views and aliases still exist after a source object (e.g. atable)
has been dropped. In such cases, aview, but not an alias, is marked invalid.

SELECT Statement

A SELECT statement is used to query the database. It has the following components, not all
of which need be used in any particular query:

e SELECT clause. One of theseisrequired, and it must return at least one item, be it a col-
umn, aliteral, the result of afunction, or something else. One must also access at least
one table, be that atrue table, atemporary table, aview, or an dlias.

e WITH clause. This clauseis optional. Use this phrase to include independent SELECT
statements that are subsequently accessed in afinal SELECT (see page 28).

* ORDER BY clause. Optiondly, order the final output (see page 121).

¢« FETCH FIRST clause. Optionally, stop the query after "n" rows (see page 17). If an op-
timize-for valueis also provided, both values are used independently by the optimizer.

e READ-ONLY clause. Optionally, state that the query isread-only. Some queries are in-
herently read-only, in which case this option has no effect.

« FOR UPDATE clause. Optionally, state that the query will be used to update certain col-
umns that are returned during fetch processing.

OPTIMIZE FOR n ROWS clause. Optionally, tell the optimizer to tune the query assum-
ing that not al of the matching rows will be retrieved. If afirst-fetch valueis also pro-
vided, both values are used independently by the optimizer.

Refer to the IBM manuals for a complete description of all of the above. Some of the more
interesting options are described below.

Introduction to SQL 15

Graeme Birchall ©

» SELECT statement 4}
L WITH L common table expression J;

} L ORDER BY clause J L FIRST FETCH clause J k READ-ONLY clause ﬂ
FOR UPDATE clause

X w

} L OPTIMIZE FOR cIauseJ
Figure 8, SELECT Statement Syntax (general)
SELECT Clause

Every query must have at least one SELECT statement, and it must return at least one item,
and access at |east one object.

w SELECT iE :rzm item | }

F FROM table name ‘
view name :‘ correlation name J
alias name AS
(full select)

} L WHERE ex i j—‘ N
pression
t and /or

Figure 9, SELECT Statement Syntax
SELECT Items

e Column: A column in one of the table being selected from.

e Literal: A litera value (e.g. "ABC"). Usethe AS expression to name the literal.
e Special Register: A special register (e.g. CURRENT TIME).

¢ Expression: An expression result (e.g. MAX(COL1*10)).

e Full Select: An embedded SELECT statement that returns a single row.

FROM Objects

e Table: Either apermanent or temporary DB2 table.

¢ View: A standard DB2 view.

« Alias: A DB2 diasthat pointsto atable, view, or another aias.

¢ Full Select: An embedded SELECT statement that returns a set of rows.

Sample SQL
SELECT DEPTNO ANSVEER
, ADMRDEPT —=——=—=—=—=—=—=—=—=—=—=—======
, ABC AS ABC DEPTNO ADVRDEPT ABC
FROM DEPARTMENT el il e
WHERE DEPTNAME LI KE ' 9% NG% BO1 A0O0 ABC
CRDER BY 1, D11 Do1 ABC

Figure 10, Sample SELECT statement

To select all of the columnsin atable (or tables) one can use the "*" notation:

16 SQL Components

DB2 UDB V8.1 Cookbook ©

SELECT * ANSVER (part of)
WHERE DEPTNAME LI KE * 9% NG% DEPTNO etc. ..
ORDER BY 1; eeeee e e e >>>

BO1 PLANNI NG
D11 MANUFACTU

Figure 11, Use"*" to select all columnsin table

To select both individual columns, and al of the columns (using the "*" notation), in asingle
SELECT statement, one can still use the "*", but it must fully-qualified using either the object
name, or a correlation name:

SELECT DEPTNO ANSWER (part of)

, DEPARTIVENT. * —==—=—====—=—=—=—=—=—=—=—========
FROM DEPARTMENT DEPTNO DEPTNO etc. ..
WHERE ~ DEPTNAME LIKE ' % NG% meeecmeio oo Ll >>>
ORDER BY 1; BO1 BO1 PLANNI NG

D11 D11 MANUFACTU
Figure 12, Select anindividual column, and all columns

Use the following notation to select all the fieldsin atable twice:

SELECT DEPARTMENT. * ANSWVER (part of)
y EPARTAEN-I-. * =T
FROM DEPARTMENT DEPTNO etc. ..
WHERE DEPTNAME LIKE "OWNING mmmeee eme oo >>>
ORDER BY 1; BO1 PLANNI NG

Figure 13, Select all columns twice

FETCH FIRST Clause

The fetch first clause limits the cursor to retrieving "n" rows. If the clause is specified and no
number is provided, the query will stop after the first fetch.

1
F FETCH FIRST ’7 ROW ONLY
L integer — L ROWSJ }

Figure 14, Fetch First clause Syntax

If this clause is used, and there isno ORDER BY, then the query will simply return arandom
set of matching rows, where the randomnessis a function of the access path used and/or the
physical location of the rowsin the table:

SELECT YEARS ANSVER
, NAVE ———=—=—=—=—=—=—=—=—=—=—=—=======
, 1D YEARS NAME I D
FROM STAFF e e
FETCH FI RST 3 ROWS ONLY; 7 Sanders 10
8 Pernal 20
5 Mar enghi 30

Figure 15, FETCH FIRST without ORDER BY, gets random rows

WARNING: Using the FETCH FIRST clause to get the first "n" rows can sometimes return
an answer that is not what the user really intended. See below for details.

If an ORDER BY is provided, then the FETCH FIRST clause can be used to stop the query
after a certain number of what are, perhaps, the most desirable rows have been returned.
However, the phrase should only be used in this manner when the related ORDER BY
uniquely identifies each row returned.

Introduction to SQL 17

Graeme Birchall ©

To illustrate what can go wrong, imagine that we wanted to query the STAFF table in order to
get the names of those three employees that have worked for the firm the longest - in order to
give them alittle reward (or possibly to fire them). The following query could be run:

SELECT YEARS ANSVEER
, NAME —=—=—===—==—=—=—=—=—=—=—=======
, I D YEARS NAME 1D
FROM STAFF eeeee e e iae e oo
VWHERE YEARS |'S NOT NULL 13 Graham 310
ORDER BY YEARS DESC 12 Jones 260
FETCH FI RST 3 ROA5 ONLY,; 10 Hanes 50

Figure 16, FETCH FIRST with ORDER BY, gets wrong answer

The above query answers the question correctly, but the question was wrong, and so the an-
swer iswrong. The problem isthat there are two employees that have worked for the firm for
ten years, but only one of them shows, and the one that does show was picked at random by
the query processor. Thisis amost certainly not what the business user intended.

The next query is similar to the previous, but now the ORDER ID uniquely identifies each
row returned (presumably as per the end-user’s instructions):

SELECT YEARS ANSVER
, NAME ———=—=—=——=———=—=—=—=—=—======
, I D YEARS NAME 1D
FROM STAFF eemee e e e e e oo
VWHERE YEARS |I'S NOT NULL 13 Graham 310
ORDER BY YEARS DESC 12 Jones 260
, 1D DESC 10 Quill 290

FETCH FI RST 3 ROWS ON\LY;
Figure 17, FETCH FIRST with ORDER BY, gets right answer

WARNING: Getting the first "n" rows from a query is actually quite a complicated prob-
lem. Refer to page 62 for a more complete discussion.

Correlation Name

The correlation nameis defined in the FROM clause and relates to the preceding object
name. In some cases, it is used to provide a short form of the related object name. In other
situations, it isrequired in order to uniquely identify logical tables when a single physical
tableis referred to twice in the same query. Some sample SQL follows:

SELECT A EMPNO ANSVEER
FROM EMPLOYEE A EMPNO LASTNAME

, (SELECT MAX(EMPNO) AS EMPNO
FROM EMPLOYEE) AS B
WHERE A EMPNO = B. EMPNO

Figure 18, Correlation Name usage example

SELECT A. EMPNO ANSVEER
, A. LASTNAVE ———————————————=—=—=—====
, B. DEPTNO AS DEPT EMPNO LASTNAME DEPT
FROM EVMPLOYEE Y e R
, DEPARTMENT B 000090 HENDERSON E11
VWHERE A. WORKDEPT = B. DEPTNO 000280 SCHNEI DER E11
AND A. JOB <> ' SALESREP 000290 PARKER E11
AND B. DEPTNAVE = ' OPERATI ONS 000300 SM TH E11
AND A. SEX IN('"M,"F) 000310 SETRI GHT E11
AND B. LOCATI ON | S NULL

ORDER BY 1;
Figure 19, Correlation Name usage example

18 SQL Components

DB2 UDB V8.1 Cookbook ©

Renaming Fields

The AS phrase can be used in a SELECT list to give afield adifferent name. If the new name
isaninvalid field name (e.g. contains embedded blanks), then place the name in quotes:

SELECT EMPNO AS E_NUM ANSVEER
,MDNNT AS "M INT" —==================
,PHONENO AS "..." E NUM M INT
FROM EMPLOEE T -
VWHERE EMPNO < ' 000030’ 000010 | 3978
ORDER BY 1; 000020 L 3476

Figure 20, Renaming fields using AS

The new field name must not be qualified (e.g. A.C1), but need not be unique. Subsequent
usage of the new name is limited as follows:

e Itcanbeusedinan order by clause.
e It cannot be used in other part of the select (where-clause, group-by, or having).
¢ It cannot be used in an update clause.

* Itisknown outside of the full-select of nested table expressions, common table expres-
sions, and in aview definition.
CREATE VI EW EMP2 AS

SELECT EMPNO AS E_NuM
,MDINIT AS "M I NT"

,PHONENO AS "..."
FROM EMPLOYEE; ANSVER

SELECT * ENM MINT ...
FROM EMP2 LTl
WHERE "..." = '3978; 000010 | 3978

Figure 21, View field names defined using AS

Working with Nulls

In SQL something can betrue, false, or null. Thisthree-way logic has to always be consid-
ered when accessing data. To illustrate, if wefirst select al the rowsin the STAFF table
where the SALARY is < $10,000, then all the rows where the SALARY is>= $10,000, we
have not necessarily found al the rows in the table because we have yet to select those rows
where the SALARY isnull.

The presence of null values in atable can also impact the various column functions. For ex-
ample, the AVG function ignores null values when calculating the average of a set of rows.
This means that a user-cal culated average may give a different result from a DB2 calcul ated
equivalent:

SELECT AVE COW) AS Al ANSVEER
FROM STAFF Al A2
VWHERE ID < 100; aiaaee aeaaes

796.025 530.68
Figure 22, AVG of data containing null values

Null values can a so pop in columns that are defined as NOT NULL. This happens when a
field is processed using a column function and there are no rows that match the search crite-
ria

Introduction to SQL 19

Graeme Birchall ©

SELECT COUNT(*) AS NUM ANSVER
, MAX(LASTNAME) AS MAX ========
FROM EMPLOYEE NUM MAX

VWHERE FI RSTNME = ' FRED ; [

Figure 23, Getting a NULL value from a field defined NOT NULL
Why Nulls Exist

Null values can represent two kinds of data. In first case, the valueis unknown (e.g. we do
not know the name of the person’s spouse). Alternatively, the valueis not relevant to the
situation (e.g. the person does not have a spouse).

Many people prefer not to have to bother with nulls, so they use instead a specia value when
necessary (e.g. an unknown employee name is blank). This trick works OK with character
data, but it can lead to problems when used on numeric values (e.g. an unknown salary is set
to zero).

Locating Null Values

One can not use an equal predicate to locate those values that are null because anull value
does not actually equal anything, not even null, it issimply null. The ISNULL or ISNOT
NULL phrases are used instead. The following example gets the average commission of only
those rows that are not null. Note that the second result differs from the first due to rounding
loss.

SELECT AVE COW) AS Al ANSVEER

FROM STAFF Al A2

VWHERE ID< 100 aiaaee aeaao-
AND COW IS NOT NULL; 796. 025 796.02

Figure 24, AVG of those rows that are not null

SQL Predicates

A predicate is used in either the WHERE or HAVING clauses of a SQL statement. It speci-
fies a condition that true, false, or unknown about arow or a group.

Basic Predicate

A basic predicate compares two values. If either valueis null, the result is unknown. Other-
wisetheresult is either true or false.

expresion = expression }

T or] >

Figure 25, Basic Predicate syntax

20 SQL Predicates

DB2 UDB V8.1 Cookbook ©

SELECT ID, JOB, DEPT ANSVER

VWHERE JoB = ' Mr’ ID JOB
AND NOT JOB <> 'Myr’ S
AND NOT JOB = ' Sales’ 10 Myr
AND ID <> 100 30 Myr
AND ID >= 0 50 Myr
AND ID <= 150 140 Mr
AND NOT DEPT = 50

ORDER BY ID;
Figure 26, Basic Predicate examples

Quantified Predicate

A quantified predicate compares one or more values with a collection of values.

>
<=

expression = SOME — (fullselect)4>
} L NOT J <> kANY }
< ALL

>=

L (£expression j;) —=

SOME
Loy —
Figure 27, Quantified Predicate syntax,1 of 2
SELECT ID, JOB ANSVEER
FROM STAFF ========
WHERE JOB = ANY (SELECT JOB FROM STAFF) ID JOB
AND ID <= ALL (SELECT ID FROM STAFF) - .-
ORDER BY | D; 10 Myr
Figure 28, Quantified Predicate example, two single-value sub-queries
SELECT ID, DEPT, JOB ANSVEER
FROM STAFF —=============
VHERE (1D, DEPT) = ANY ID DEPT JOB
(SELECT DEPT, ID oo oo oo
FROM STAFF) 20 20 Sales
ORDER BY 1;

Figure 29, Quantified Predicate example, multi-value sub-query

See the sub-query chapter on page 159 for more data on this predicate type.

A variation of this predicate type can be used to compare sets of values. Everything on both

sides must equal in order for the row to match:

(rexpression l) — = (£expression l) *}
} L NOT J
Figure 30, Quantified Predicate syntax, 2 of 2
SELECT | D, DEPT, JOB ANSVER
FROM STAFF —=—=—=—=—=—=—====
VWHERE (1D, DEPT) = (30, 28) | D DEPT JOB
OR (IDYEARS) = (90, 7) oo
R (DEPT,JOB) = (38, Myr’') 30 38 Myr

ORDER BY 1;
Figure 31, Quantified Predicate example, multi-value check

Below is the same query written the old fashioned way:

Introduction to SQL

21

Graeme Birchall ©

SELECT | D, DEPT, JOB ANSVER
FROM STAFF ——=—=—=—=—=—=—===
WHERE (ID =30 AND DEPT = 28) | D DEPT JOB
R (ID =90 AND YEARS = 4 H
OR (DEPT = 38 AND JOB ="Mr’) 30 38 Myr
ORDER BY 1;

Figure 32, Same query as prior, using individual predicates

BETWEEN Predicate
The BETWEEN predicate compares a value within a range of values.

Fﬁ exprsn. BETWEEN — low val.—— AND—— high val. »
NOT [NOT j

Figure 33, BETWEEN Predicate syntax

The between check always assumes that the first value in the expression is the low value and
the second value is the high value. For example, BETWEEN 10 AND 12 may find data, but
BETWEEN 12 AND 10 never will.

SELECT 1D, JOB ANSVER
FROM STAFF —=—=—======
VWHERE I D BETWEEN 10 AND 30 ID JOB
AND I D NOT BETWEEN 30 AND 10 == -----
AND NOT | D NOT BETWEEN 10 AND 30 10 Myr
ORDER BY I D; 20 Sal es
30 Myr

Figure 34, BETWEEN Predicate examples

EXISTS Predicate
An EXISTS predicate tests for the existence of matching rows.

EXISTS — (fullselect)
> or g
Figure 35, EXISTS Predicate syntax
SELECT I D, JOB ANSVER
FROM STAFF A —========
WHERE EXI STS ID JOB
(SELECT *
FROM STAFF B 10 Myr
WHERE B.ID = A ID 20 Sal es
AND B.ID < 50) 30 Myr
ORDER BY ID; 40 Sal es

Figure 36, EXISTS Predicate example
NOTE: See the sub-query chapter on page 159 for more data on this predicate type.

IN Predicate

The IN predicate compares one or more values with alist of values.

exprsn. B] IN (fullselect) }
NOT NOT ’
(Lexpression L)]
expression
(i expression j—)

IN (fullselect) —
. not |

Figure 37, IN Predicate syntax

22 SQL Predicates

DB2 UDB V8.1 Cookbook ©

Thelist of values being compared in the IN statement can either be a set of in-line expres-
sions (e.g. ID in (10,20,30)), or a set rows returned from a sub-query. Either way, DB2 simply
goes through the list until it finds a match.

SELECT ID, JOB ANSVEER

WHERE 1D IN (10, 20, 30) ID JOB

AND IDIN (SELECTID oo
FROM STAFF) 10 Myr

AND 1D NOT IN 99 20 Sal es
ORDER BY 1D 30 Myr

Figure 38, IN Predicate examples, single values

The IN statement can also be used to compare multiple fields against a set of rows returned
from a sub-query. A match exists when al fields equal. Thistype of statement is especially
useful when doing a search against a table with a multi-columns key.

WARNING: Be careful when using the NOT IN expression against a sub-query result. If
any one row in the sub-query returns null, the result will be no match. See page 159 for

more details.

SELECT EMPNO, LASTNAME ANSVER

FROM EMPLOYEE —==============

WHERE (EMPNO, ' AD3113') IN EMPNO LASTNAME
(SELECT EMPNO, PRAUNO meee ool
FROM EMP_ACT 000260 JOHNSON
WHERE EMPTI ME > 0.5) 000270 PEREZ

ORDER BY 1;

Figure 39, IN Predicate example, multi-value
NOTE: See the sub-query chapter on page 159 for more data on this statement type.

LIKE Predicate
The LIKE predicate does partia checks on character strings.

Fﬁ exprsn. LIKE — pattern
NOT E NOT j L ESCAPE — patternJ

Figure 40, LIKE Predicate syntax

The per cent and under scor e characters have special meanings. The first means skip a string
of any length (including zero) and the second means skip one byte. For example:

* LIKE'AB_D% Finds’ABCD’ and 'ABCDE’, but not 'ABD’, nor 'ABCCD'.

e LIKE' X’ Finds XX’ and 'DX’, but not "X’, nor '"ABX’, nor 'AXB’.
e LIKE %X’ Finds'AX’, X, and 'AAX’, but not "XA".
SELECT |1 D, NAME ANSVEER
FROM STAFF —===—=—==—=—=—=—=—===
WHERE NAME LI KE ' S%’ ID NAME
OR NAME LIKE ' _a_a% R
OR NAME LIKE ' % _%’ 130 Yanmguchi
ORDER BY ID; 200 Scoutten

Figure 41, LIKE Predicate examples
The ESCAPE Phrase

The escape character in a LIKE statement enables one to check for percent signs and/or un-
derscores in the search string. When used, it precedes the "%’ or ’_’ in the search string indicat-
ing that it isthe actua value and not the specia character which isto be checked for.

Introduction to SQL 23

Graeme Birchall ©

When processing the LIKE pattern, DB2 works thus: Any pair of escape charactersistreated
asthelitera value (e.g. "++" meansthe string "+"). Any single occurrence of an escape char-
acter followed by either a"%" or a"_" meanstheliteral "%" or *_" (e.g. "+%" means the

string "%"). Any other "%" or "_" isused asin anormal LIKE pattern.

LI KE STATEMENT TEXT VWHAT VALUES MATCH

LI KE ' AB% Finds AB, any string

LI KE ' AB% ESCAPE ' + Finds AB, any string

LI KE * AB+% ESCAPE ' + Fi nds AB%

LI KE * AB++’ ESCAPE ' +' Fi nds AB+

LI KE ' AB+9846 ESCAPE ' + Fi nds AB% any string

LI KE ' AB++% ESCAPE ' + Fi nds AB+, any string

LI KE * AB+++% ESCAPE ' + Fi nds AB+%

LI KE ' AB+++9%0% ESCAPE ' + Fi nds AB+% any string

LI KE ' AB+%+98% ESCAPE ' + Fi nds AB®4 any string

LI KE * AB++++ ESCAPE ' + Fi nds AB++

LI KE ' AB+++++% ESCAPE '+ Fi nds AB++%

LI KE ' AB++++9% ESCAPE ' + Fi nds AB++, any string

LI KE ' AB+%++9% ESCAPE ' + Fi nds AB%*-, any string

Figure 42, LIKE and ESCAPE examples
Now for sample SQL:

SELECT 1D ANSVER

FROM STAFF ======

WHERE ID = 10 I D
AND ' ABC LIKE ' AB% ---
AND 'AUC LIKE 'A% ESCAPE '/’ 10

AND A C LIKE'’A _C ESCAPE '\’
AND 'A'$ LIKE 'A$_$$' ESCAPE '$';
Figure 43, LIKE and ESCAPE examples

NULL Predicate

The NULL predicate checks for null values. The result of this predicate cannot be unknown.
If the value of the expression is null, the result istrue. If the value of the expression is not
null, theresult isfalse.

exprsn. IS NULL
> er T or] >

Figure 44, NULL Predicate syntax

SELECT ID, COWM ANSVER

VHERE ID < 100 ID COWM
AND ID 1S NOT NULL
AND COMM | S NULL 10 -
AND NOT COWM | S NOT NULL 30 -

ORDER BY ID; 50 -

Figure 45, NULL Predicate examples
NOTE: Use the COALESCE function to convert null values into something else.

Precedence Rules

Expressions within parentheses are done first, then prefix operators (e.g. -1), then multiplica-
tion and division, then addition and subtraction. When two operations of equal precedence are
together (e.g. 1* 5/ 4) they are done from left to right.

24 SQL Predicates

DB2 UDB V8.1 Cookbook ©

Exanpl e: 555 + -22 | (12 - 3) * 66 ANSVER

N N N N N 423
5th 2nd 3rd 1st 4th

Figure 46, Precedence rules example

Be aware that the result that you get depends very much on whether you are doing integer or
decimal arithmetic. Below is the above done using integer numbers:

SELECT (12 - 3) AS | NT1
, =22/ (12 - 3) AS | NT2
, .22/ (12 - 3) * 66 AS INT3
555 + -22 / (12 - 3) * 66 AS INT4
FROM SYSI BM SYSDUMWY1; ANSVEER

INT1 INT2 I NT3 | NT4

9 -2 -132 423
Figure 47, Precedence rules, integer example

Note: DB2 truncates, not rounds, when doing integer arithmetic.

Here is the same done using decimal numbers:

SELECT (12.0 - 3) AS DECL
, -22 / (12.0 - 3) AS DEC2
, =22/ (12.0 - 3) * 66 AS DEC3
555 + -22 / (12.0 - 3) * 66 AS DEC4
FROM SYSI BM SYSDUMWY1; ANSVER

9.0 -2.4 -161.3 393.6
Figure 48, Precedence rules, decimal example

AND operations are done before OR operations. This means that one side of an OR isfully
processed before the other side is begun. To illustrate:

SELECT * ANSVEER>> COL1 cOL2 TABLE1
FROM TABLE1 heee aeen e +
VWHERE calr ='¢C A AA | COL1| COL2|
AND COLl >="A B BB [----]----]
OR COL2 >= 'AA c cc A |AA]
CRDER BY COL1,; | B | BB |
|C [cC |
SELECT * ANSVER>> CoLl coL2 o +
FROM TABLE1 e -
WHERE (COL1 ='C A AA
AND COLl >="A) B BB
OR COL2 >= ' AA C cC
ORDER BY COL1,;
SELECT * ANSVEER>> COL1 COL2
FROM TABLE1 e —oo-
VWHERE calr ='¢C C cC

AND (COL1 >= ' A
OR COL2 >= 'AA)
ORDER BY COL1

Figure 49, Use of OR and parenthesis

WARNING: The omission of necessary parenthesis surrounding OR operators is a very
common mistake. The result is usually the wrong answer. One symptom of this problem is
that many more rows are returned (or updated) than anticipated.

Introduction to SQL 25

Graeme Birchall ©

Temporary Tables - Introduction

How one defines atemporary table dependsin part upon how often, and for how long, one
intendsto useit:

« Within aquery, single use.

¢ Within aquery, multiple uses.

e For multiple queriesin one unit of work.

¢ For multiple queries, over multiple units of work, in one thread.

If one intends to use a temporary table just once, it can be defined as a nested table expres-
sion. In the following example, we use atemporary table to sequence the matching rowsin
the STAFF table by descending salary. We then select the 2nd through 3rd rows:

SELECT I D
, SALARY
FROM (SELECT S.*
, ROW NUMBER() OVER(ORDER BY SALARY DESC) AS SORDER

FROM STAFF S

VWHERE ID < 200 ANSVEER
WHERE SORDER BETWEEN 2 AND 3 ID SALARY
CORDER BY | D e e

50 20659. 80
140 21150.00

Figure 50, Nested Table Expression

Imagine that one wanted to get the percentage contribution of the salary in some set of rows
in the STAFF table - compared to the total salary for the same. The only way to do thisisto
access the matching rows twice; Once to get the total salary (i.e. just one row), and then again
tojoin the total salary value to each individual salary - to work out the percentage.

Selecting the same set of rowstwice in asingle query is generally unwise because the dupli-
cate code increases the likelihood of typos being made. In the next example, the desired rows
arefirst placed in atemporary table. Then the sum salary is calculated and placed in another
temporary table. Finaly, the two temporary tables are joined to get the percentage:

WTH ANSVER
RO/\S_\/\ANTED AS ————=———=—=——————=———--—————=—=—=—=====
(SELECT ~* I D NAME SALARY SUM SAL PCT
FROM STAFF o ool oLl ITTIIOL L
WHERE I D < 100 70 Rot hman 16502. 83 34504.58 47

AND UCASE(NAME) LIKE * %% 90 Koonitz 18001. 75 34504.58 52

)
SUM SALARY AS
(SELECT SUM SALARY) AS SUM SAL
FROM ROAS_WANTED)
SELECT ID
, NAMVE
, SALARY
. SUM SAL
. INT((SALARY * 100) / SUM SAL) AS PCT
FROM ROWS_WANTED
, SUM SALARY
ORDER BY | D;

Figure 51, Common Table Expression

26 Temporary Tables - Introduction

DB2 UDB V8.1 Cookbook ©

To refer to atemporary table in multiple SQL statements in the same thread, one has to define
adeclared global temporary table. An example follows:

DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED

(DEPT SMALLINT ~ NOT NULL
, AVG SALARY DEC(7,2) NOT NULL
. NUM_EMPS SMALLINT ~ NOT NULL)
ON COMWM T PRESERVE ROWS;

COWM T;

I NSERT | NTO SESSI ON. FRED
SELECT DEPT

, AVG(SALARY)
, COUNT(*) ANSVEER
FROM STAFF - =—=—=—=—=—=—===—=—=—=====
VWHERE I D> 200 DEPT AVG_SALARY NUM EMPS
GROUP BY DEPT; R L R R T
COWM T; 10 20168. 08 3
51 15161. 43 3
SELECT * 66 17215. 24 5
FROM SESSI ON. FRED; 84 16536. 75 4

Figure 52, Declared Global Temporary Table

Unlike an ordinary table, adeclared global temporary tableis not defined in the DB2 cata
logue. Nor isit sharable by other users. It only exists for the duration of the thread (or less)
and can only be seen by the person who created it. For more information, see page 34.

. ___|
Temporary Tables - in Statement

Three general syntaxes are used to define temporary tablesin a query:

¢ UseaWITH phrase at the top of the query to define a common table expression.
e Defineafull-select in the FROM part of the query.

¢ Defineafull-select in the SELECT part of the query.

The following three queries, which are logically equivalent, illustrate the above syntax styles.
Observe that the first two queries are explicitly defined as left outer joins, while the last oneis
implicitly aleft outer join:

W TH STAFF_DEPT AS ANSVER
(SELECT DEPT AS DEPT# —==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=========
, MAX(SALARY) AS MAX_SAL ID DEPT SALARY MAX_SAL
FROM STAFF e eee eeeeeee oo
VWHERE DEPT < 50 10 20 18357.50 18357.50
CROUP BY DEPT 190 20 14252.75 18357. 50
) 200 42 11508. 60 18352. 80
SELECT I D 220 51 17654. 50 -
, DEPT
, SALARY
" MAX_SAL
FROM STAFF
LEFT OQUTER JO N
STAFF_DEPT
ON DEPT = DEPT#
VWHERE NAME LI KE ' S%
ORDER BY I D;

Figure 53, Identical query (1 of 3) - using Common Table Expression

Introduction to SQL 27

Graeme Birchall ©

SELECT I D ANSVER
, DEPT —===—=—=—=—=—=—=—=—=—==—=—=—=—=========
, SALARY ID DEPT SALARY MAX_SAL
CMAX SAL L DL T T
FROM STAFF 10 20 18357.50 18357. 50
LEFT QUTER JO N 190 20 14252.75 18357.50
(SELECT DEPT AS DEPT# 200 42 11508. 60 18352. 80
, MAX(SALARY) AS MAX_SAL 220 51 17654. 50 -

FROM STAFF

VWHERE DEPT < 50
GROUP BY DEPT
) AS STAFF_DEPT

ON DEPT = DEPT#
WHERE NAME LI KE ' S%
CORDER BY | D
Figure 54, Identical query (2 of 3) - using full-select in FROM
SELECT I D ANSVER
, DEPT —===—=—=—=—=—=—=—=—=—==—=—=—=—=========
, SALARY I D DEPT SALARY MAX_SAL
"(SELECT MAX(SALARY) me sl il LllITOLD
FROM STAFF S2 10 20 18357.50 18357. 50
WHERE S1. DEPT = S2. DEPT 190 20 14252.75 18357.50
AND S2. DEPT < 50 200 42 11508. 60 18352. 80
GROUP BY DEPT) 220 51 17654. 50 -
AS MAX_ SAL
FROM STAFF S1
WHERE NAME LI KE * S%
CRDER BY | D

Figure 55, Identical query (3 of 3) - using full-select in SELECT

Common Table Expression

A common table expression is a named temporary table that is retained for the duration of a
SQL statement. There can be many temporary tablesin asingle SQL statement. Each must
have a unique name and be defined only once.

All references to atemporary table (in a given SQL statement run) return the same resullt.
Thisisunlike tables, views, or aiases, which are derived each time they are called. Also un-
like tables, views, or aliases, temporary tables never contain indexes.

WITH £ iéjentifier AS (select stmt) J—}
V L(col. names) J —E j

values stmt

Figure 56, Common Table Expression Syntax
Certain rules apply to common table expressions:

e Column names must be specified if the expression isrecursive, or if the query invoked
returns duplicate column names.

¢ Thenumber of column names (if any) that are specified must match the number of col-
umns returned.

¢ If thereis more than one common-table-expression, latter ones (only) can refer to the
output from prior ones. Cyclic references are not allowed.

« A common table expression with the same name as areal table (or view) will replace the
real table for the purposes of the query. The temporary and real tables cannot be referred
to in the same query.

e Temporary table names must follow standard DB2 table naming standards.

28 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

e Each temporary table name must be unique within a query.
e Temporary tables cannot be used in sub-queries.
Select Examples

In thisfirst query, we don't haveto list the field names (at the top) because every field already
has a name (given in the SELECT):

W TH TEMP1 AS ANSVER
, MAX(DEPT) AS MAX_DEPT MAX_NAME MAX DEPT
FROM STAFF LT T
) Yamaguchi 84
SELECT *
FROM TEMP1,

Figure 57, Common Table Expression, using named fields

In this next example, the fields being selected are unnamed, so names have to be specified in
the WITH statement:

W TH TEMPL (MAX_NAME, MAX_DEPT) AS ANSVER
, MAX(DEPT) MAX_NAMVE MAX_DEPT
FROM ' STAFF LTl T
) Yamaguchi 84
SELECT *
FROM TEMPL;

Figure 58, Common Table Expression, using unnamed fields

A single query can have multiple common-table-expressions. In this next example we use two
expressions to get the department with the highest average salary:

W TH ANSVER
(SELECT DEPT MAX_AVG
,AVG(SALARY) AS AVG SAL eeiTaiio.
FROM STAFF 20865. 8625
GROUP BY DEPT),
TEMP2 AS

(SELECT MAX(AVG SAL) AS MAX_AVG
FROM TEMP1)

SELECT *

FROM TEMP2;

Figure 59, Query with two common table expressions

FY 1, the exact same query can be written using nested table expressions thus:

SELECT * ANSVEER
FROM (SELECT MAX(AVG SAL) AS MAX_AVG —=========
FROM (SELECT DEPT MAX_AVG
,AVG(SALARY) AS AVG SAL eeeoeoe
FROM STAFF 20865. 8625
GROUP BY DEPT
) AS TEMPL
) AS TEMP2;

Figure 60, Same as prior example, but using nested table expressions

The next query first builds atemporary table, then derives a second temporary table from the
first, and then joins the two temporary tables together. The two tables refer to the same set of
rows, and so use the same predicates. But because the second table was derived from the first,
these predicates only had to be written once. This greatly simplified the code:

Introduction to SQL 29

Graeme Birchall ©

WTH TEMP1 AS ANSVER
(SELECT | D —===—=—=—=—=—=—=—=—=—==—=—=—=—=========
, NAMVE ID DEPT SALARY MAX_SAL
B e
, SALARY 10 20 18357.50 18357. 50
FROM STAFF 190 20 14252.75 18357.50
VWHERE I D < 300 200 42 11508. 60 11508. 60
AND DEPT <> 55 220 51 17654.50 17654.50

AND NAME LI KE * S%
AND DEPT NOT I N
(SELECT DEPTNUMB
FROM ORG
WHERE DI VI SI ON
OR LOCATI ON

" SQUTHERN
" HARTFORD')

)
, TEMP2 AS
(SELECT DEPT
, MAX(SALARY) AS MAX_SAL
FROM TEMP1
GRCUP BY DEPT

)
SELECT T1.I1D
, T1. DEPT
, T1. SALARY
, T2. MAX_SAL
FROM TEMP1 T1
, TEMP2 T2
WHERE T1. DEPT = T2. DEPT
CRDER BY T1. 1D,

Figure 61, Deriving second temporary table fromfirst
Insert Usage

A common table expression can be used to an insert-sel ect-from statement to build all or part
of the set of rowsthat are inserted:

I NSERT | NTO STAFF

W TH TEMP1 (MAX1) AS

(SELECT MAX(ID) + 1
FROM STAFF

)
SELECT MAX1,' A ,1,'B,2,3,4
FROM TEMPL;
Figure 62, Insert using common table expression

As it happens, the above query can be written equally well in the raw:

I NSERT | NTO STAFF
SELECT MAX(1D) + 1
ALV1,7B,2,3,4
FROM STAFF;
Figure 63, Equivalent insert (to above) without common table expression

Full-Select

A full-select is an alternative way to define atemporary table. Instead of using aWITH clause
at the top of the statement, the temporary table definition is embedded in the body of the SQL
statement. Certain rules apply:

¢ When used in aselect statement, a full-select can either be generated in the FROM part of
the query - where it will return atemporary table, or in the SELECT part of the query -
whereit will return a column of data.

¢ When theresult of afull-select isatemporary table (i.e. in FROM part of a query), the
table must be provided with a correlation name.

30 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

« When theresult of afull-select isacolumn of data (i.e. in SELECT part of query), each
reference to the temporary table must only return a single value.

Full-Select in FROM Phrase

The following query uses a nested table expression to get the average of an average - in this
case the average departmental salary (an average in itself) per division;

SELECT DI VI SI ON
, DEC(AVG(DEPT_AVG), 7,2) AS DI V_DEPT

, COUNT(*) AS #DPTS
. SUM #EMPS) AS #EMPS
FROM (SELECT DI VI SI ON
, DEPT

, AVG(SALARY) AS DEPT_AVG
, COUNT(*) AS #EMPS

FROM STAFF ANSVER
y mG ey
VHERE DEPT = DEPTNUMB DI VISION DI V_DEPT #DPTS #EMPS
GROUP BY DIVISION mmmmmmmen ool oo oo
, DEPT Cor porate 20865. 86 1 4
) AS XXX Eastern 15670. 32 3 13
GROUP BY DI VI SI ON; M dwest 15905. 21 2 9
West ern 16875. 99 2 9
Figure 64, Nested column function usage
The next query illustrates how multiple full-selects can be nested inside each other:
SELECT ID ANSVEER
FROM (SELECT * ======
FROM (SELECT ID, YEARS, SALARY I D
FROM (SELECT *
FROM (SELECT * 170
FROM STAFF 180
VWHERE DEPT < 77 230
)AS T1
WHERE D < 300
)AS T2
WHERE ~JOB LI KE * C%
)AS T3
VWHERE =~ SALARY < 18000
)AS T4

WHERE ~ YEARS < 5;
Figure 65, Nested full-selects

A very common usage of afull-select isto join aderived table to area table. In the following

example, the average salary for each department is joined to the individual staff row:

SELECT A 1D ANSVEER
, A. DEPT —==—=—=—==—=—=—=—=—=—=—=—=—==—========
" A SALARY ID DEPT SALARY AVG DEPT
. DEC(B. AVGSAL, 7, 2) AS AVG DEPT S
FROM STAFF A 10 20 18357.50 16071. 52
LEFT QUTER JO N 20 20 18171.25 16071.52
(SELECT DEPT AS DEPT 30 38 17506. 75 -
, AVG(SALARY) AS AVGSAL
FROM STAFF

GROUP BY DEPT
HAVING AVG SALARY) > 16000
)AS B
N A. DEPT = B. DEPT
WHERE A ID < 40
ORDER BY A. 1D,

Figure 66, Join full-select to real table

Introduction to SQL

31

Graeme Birchall ©

Table Function Usage

If the full-select query has areferenceto arow in atable that is outside of the full-select, then
it needsto be written asa TABLE function call. In the next example, the preceding "A" table
is referenced in the full-select, and so the TABLE function call is required:

SELECT A ID ANSVER
, A. DEPT ——————————-————=—————=—====
, A. SALARY | D DEPT SALARY DEPTSAL
,B.DEPTSAL e eeee eemeeeoo oo
FROM STAFF A 10 20 18357. 50 64286. 10
, TABLE 20 20 18171. 25 64286. 10
(SELECT B. DEPT 30 38 17506. 75 77285. 55
, SUM B. SALARY) AS DEPTSAL
FROM STAFF B

WHERE ~ B.DEPT = A DEPT
GROUP BY B. DEPT
)AS B

WHERE A ID < 40

ORDER BY A. 1D,

Figure 67, Full-select with external table reference

Below isthe same query written without the reference to the "A" table in the full-select, and
thus without a TABLE function call:

SELECT A ID ANSVER
, A. DEPT ——————————-————=—————=—====
, A. SALARY | D DEPT SALARY DEPTSAL
,B.DEPTSAL e eeee eeeeeeoe oo
FROM STAFF A 10 20 18357. 50 64286. 10
, (SELECT B. DEPT 20 20 18171. 25 64286. 10
, SUM B. SALARY) AS DEPTSAL 30 38 17506. 75 77285. 55
FROM STAFF B
CGROUP BY B. DEPT
)AS B

WHERE AlID <40
AND B. DEPT = A. DEPT
CRDER BY A. | D,

Figure 68, Full-select without external table reference

Any externally referenced table in afull-select must be defined in the query syntax (starting at
the first FROM statement) before the full-select. Thus, in the first example above, if the "A"
table had been listed after the "B" table, then the query would have been invalid.

Full-Select in SELECT Phrase
A full-select that returns a single column and row can be used in the SELECT part of a query:

SELECT I D ANSVEER
, SALARY —————————————=—=—=====
, (SELECT MAX(SALARY) | D SALARY MAXSAL
FROM STAFF ee eeeeeee oo oo
) AS MAXSAL 10 18357.50 22959. 20
FROM STAFF A 20 18171.25 22959. 20
WHERE ID < 60 30 17506. 75 22959. 20
ORDER BY I D; 40 18006. 00 22959. 20

50 20659. 80 22959. 20
Figure 69, Use an uncorrelated Full-Select in a SELECT list

A full-select in the SELECT part of a statement must return only asingle row, but it need not
always be the same row. In the following example, the ID and SALARY of each employeeis
obtained - along with the max SALARY for the employee's department.

32 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

SELECT I D ANSVER
, SALARY ———=——=——=—=—=—=—=—=—=—=—=—=—===
, (SELECT MAX(SALARY) I D SALARY MAXSAL
FROM STAFF B L
WHERE A. DEPT = B. DEPT 10 18357.50 18357.50
AS MAXSAL 20 18171.25 18357.50
FROM STAFF A 30 17506. 75 18006. 00
VWHERE ID < 60 40 18006. 00 18006. 00
CRDER BY | D 50 20659. 80 20659. 80
Figure 70, Use a correlated Full-Select in a SELECT list
SELECT I D ANSVER
, DEPT —=———-——=—————------———————=—=—=======
, SALARY I D DEPT SALARY 4 5
" (SELECT MAX(SALARY) L LTIl .
FROM STAFF B 10 20 18357.50 18357.50 22959. 20
VWHERE B. DEPT = A. DEPT) 20 20 18171.25 18357.50 22959. 20
, (SELECT MAX(SALARY) 30 38 17506. 75 18006. 00 22959. 20
FROM STAFF) 40 38 18006. 00 18006. 00 22959. 20
FROM STAFF A 50 15 20659. 80 20659. 80 22959. 20
WHERE ID < 60
CRDER BY | D

Figure 71, Use correlated and uncorrelated Full-Selectsin a SELECT list
INSERT Usage

The following query uses both an uncorrelated and correlated full-select in the query that
builds the set of rows to be inserted:

I NSERT | NTO STAFF
SELECT ID + 1
, (SELECT M N(NANE)
FROM STAFF)
, (SELECT DEPT
FROM STAFF S2
WHERE S2.1D = S1.1D - 100)

AL, 2,3
FROM STAFF S1
WHERE ID =

(SELECT MAX(I D)
FROM STAFF);

Figure 72, Full-select in INSERT
UPDATE Usage

The following example uses an uncorrelated full-select to assign a set of workers the average
salary in the company - plus two thousand dollars.

UPDATE STAFF A ANSVEER: SALARY

SET SALARY = —====== =—===—=—=—=—==========
(SELECT AVG(SALARY) + 2000 | D DEPT BEFORE AFTER
FROM STAFF) e e e

WHERE ID < 60; 10 20 18357.50 18675. 64

20 20 18171.25 18675. 64
30 38 17506. 75 18675. 64
40 38 18006. 00 18675. 64
50 15 20659. 80 18675. 64

Figure 73, Use uncorrelated Full-Select to give workers company AVG salary (+$2000)

The next statement uses a correlated full-select to assign a set of workers the average salary
for their department - plus two thousand dollars. Observe that when there is more than one
worker in the same department, that they all get the same new salary. Thisis because the full-
select is resolved before the first update was done, not after each.

Introduction to SQL 33

Graeme Birchall ©

UPDATE STAFF A ANSVEER: SALARY
SET SALARY = —====== =—================
(SELECT AVG SALARY) + 2000 | D DEPT BEFORE AFTER
FROM STAFF B Lol L T
VWHERE A. DEPT = B. DEPT) 10 20 18357.50 18071. 52
WHERE |ID < 60; 20 20 18171.25 18071.52

30 38 17506. 75 17457.11
40 38 18006. 00 17457. 11
50 15 20659. 80 17482. 33

Figure 74, Use correlated Full-Select to give workers department AVG salary (+$2000)

NOTE: A full-select is always resolved just once. If it is queried using a correlated expres-
sion, then the data returned each time may differ, but the table remains unchanged.

Declared Global Temporary Tables

If we want to temporarily retain some rows for processing by subsequent SQL statements, we
can use a Declared Globa Temporary Table. The type of table only exists until the thread is
terminated (or sooner). It is not defined in the DB2 catalogue, and neither its definition nor its
contents are visible to other users.

w DECLARE GLOBAL TEMPORARY TABLE _ table-name }

H (icolumn-name —— column-definition) }
— LIKE table-name
—[view-name _ J
L—AS__ (__fullselect __) DEFINITION ONLY
\

EINCLUDING FCOLUMN ~1 DEFAULTS
EXCLUDING J

LUMN ATTRIBUTE
hEXCLUDING IDENTITY TCO v UTES 1
V—COLUMN ATTRIBUTES B }

LINCLUDING IDENTITY
} — ON COMMIT DELETE ROWS —— |~ NOT LOGGED — N
| WITH REPLACE | | ON COMMIT PRESERVE ROWS |
Figure 75, Declared Global Temporary Table syntax

Below is an example of declaring a global temporary table the old fashioned way:
DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED

(DEPT SMALLI NT NOT NULL
, AVG_SALARY DEC(7, 2) NOT NULL
, NUM_EMPS SMALLI NT NOT NULL)

ON COW T DELETE RO/S;
Figure 76, Declare Global Temporary Table - define columns

In the next example, the temporary table is defined to have exactly the same columns as the
existing STAFF table:

34 Declared Global Temporary Tables

DB2 UDB V8.1 Cookbook ©

DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED
LI KE STAFF | NCLUDI NG COLUMN DEFAULTS

W TH REPLACE

ON COW T PRESERVE ROWS5;

Figure 77, Declare Global Temporary Table - like another table

In the next example, the temporary table is defined to have a set of columnsthat are returned
by a particular select statement. The statement is not actually run at definition time, so any
predicates provided are irrelevant:

DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED AS
(SELECT DEPT

, MAX(| D) AS MAX_|I D
. SUM SALARY) AS SUM SAL
FROM STAFF

VWHERE NAME <> ' | DI OI"
GRCOUP BY DEPT)

DEFI NI TI ON ONLY

W TH REPLACE;

CREATE UNI QUE | NDEX SESSI ON. FREDX ON SESSI ON. FRED (DEPT) ;
Figure 78, Declare Global Temporary Table - like query output

Usage Notes

For a complete description of this feature, see the SQL reference. Below are some key points:

e Thetemporary table name can be any valid DB2 table name. The qualifier, if provided,
must be SESSION. If the qualifier is not provided, it is assumed to be SESSION. If the
temporary table aready exists, the WTIH REPLACE clause must be used to override it.

¢ Anindex can be defined on a global temporary table. The qualifier (i.e. SESSION) must
be explicitly provided.

« Any column type can be used, except the following: BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, DATALINK, reference, and structured data types.

¢ One can choose to preserve or delete (the default) the rows when a commit occurs.

e Standard identity column definitions can be added if desired.

¢ Changes are not logged.

Before a user can create a declared global temporary table, a USER TEMPORARY table-

space that they have access to, has to be created. A typical definition follows:

CREATE USER TEMPORARY TABLESPACE FRED
MANAGED BY DATABASE
USI NG (FI LE ' C:\ DB2\ TEMPFRED\ FREDL’ 1000

, FILE * C:\ DB2\ TEMPFRED\ FRED2' 1000

, FILE ' C:\ DB2\ TEMPFRED\ FRED3" 1000);

GRANT USE OF TABLESPACE FRED TO PUBLI C;
Figure 79, Create USER TEMPORARY tablespace

Do NOT use to Hold Output

In general, do not use a Declared Global Temporary Table to hold job output data, especially
if the table is defined ON COMMIT PRESERVE ROWS. If the job fails halfway through, the
contents of the temporary table will be lost. If, prior to the failure, the job had updated and

then committed Production data, it may be impossible to recreate the lost output because the
committed rows cannot be updated twice.

Introduction to SQL 35

Graeme Birchall ©

CAST Expression

The CAST is expression is used to convert one data type to another. It is similar to the various
field-type functions (e.g. CHAR, SMALLINT) except that it can also handle null values and
host-variable parameter markers.

F CAST (—E expression — AS — data-type —) 4}

NULL
parameter maker

Figure 80, CAST expression syntax
Input vs. Output Rules

¢ Expression: If theinput is neither null, nor a parameter marker, the input data-typeis
converted to the output data-type. Truncation and/or padding with blanks occur asre-
quired. An error is generated if the conversionisillegal.

e Null: If theinput is null, the output is a null value of the specified type.

e Parameter Maker: Thisoptionisonly used in programs and need not concern us here.
See the DB2 SQL Reference for details.

Examples

Use the CAST expression to convert the SALARY field from decimal to integer:

SELECT I D ANSVEER
, SALARY e]
, CAST(SALARY AS | NTEGER) AS SAL2 I D SALARY SAL2
FROM STAFF i -
VWHERE ID < 30 10 18357.50 18357
ORDER BY | D 20 18171.25 18171

Figure 81, Use CAST expression to convert Decimal to | nteger

Use the CAST expression to truncate the JOB field. A warning message will be generated for
the second line of output because non-blank truncation is being done.

SELECT I D ANSVEER
,JOB ——=—=—=—=—==—=—====
| CAST(JOB AS CHAR(3)) AS JOB2 ID JOB JOB2
FROM STAFF 0T T T
WHERE 1D < 30 10 Myr~ Mgr
ORDER BY I D; 20 Sales Sal

Figure 82, Use CAST expression to truncate Char field

Use the CAST expression to make a derived field called JUNK of type SMALLINT where all
of the values are null.

SELECT I D ANSVER
, CAST(NULL AS SMALLI NT) AS JUNK —======

FROM STAFF I D JUNK
VWHERE ID< 30 e i
ORDER BY | D; 10 -
20 -

Figure 83, Use CAST expression to define SMALLINT field with null values

36 CAST Expression

DB2 UDB V8.1 Cookbook ©

VALUES Clause

The VALUES clause is used to define a set of rows and columns with explicit values. The
clauseis commonly used in temporary tables, but can also be used in view definitions. Once
defined in atable or view, the output of the VALUES clause can be grouped by, joined to,
and otherwise used asif it is an ordinary table - except that it can not be updated.

expression ‘

V VALUES L , }
(+ expression ‘)
L NULL A

Figure 84, VALUES expression syntax

Each column defined is separated from the next using a comma. Multiple rows (which may
also contain multiple columns) are separated from each other using parenthesis and a comma.
When multiple rows are specified, all must share acommon data type. Some examples fol-
low:

VALUES 6 <=1 row, 1 colum
VALUES (6) <=1 row, 1 colum
VALUES 6, 7, 8 <=1 row, 3 colums
VALUES (6), (7), (8) <= 3 rows, 1 colum
VALUES (6,66), (7,77), (8, NULL) <= 3 rows, 2 columms
Figure 85, VALUES usage examples
Sample SQL

The next statement shall define atemporary table containing two columns and three rows.
Thefirst column will default to type integer and the second to type varchar.

W TH TEMP1 (COL1, COL2) AS ANSVER
(VALUES (0, "AX) =========
(1, 'BB) CcoL1l COoL2
(2, NULL) s
) 0 AA
SELECT * 1 BB
FROM TEMP1; 2 -

Figure 86, Use VALUES o define a temporary table (1 of 4)

If we wish to explicitly control the output field types we can define them using the appropri-
ate function. Thistrick does not work if even asingle value in the target column is null.

WTH TEMP1 (COL1, COL2) AS ANSVER

(VALUES (DECI MAL(O ,3,1), ’'AA) =========
, (DECIMAL(1 ,3,1), 'BB) COoLl COL2
,(DECI MAL(2 ,3,1), NULL) oo .

) 0.0 AA

SELECT * 1.0 BB

FROM TEMWPL; 2.0 -

Figure 87, Use VALUES o define a temporary table (2 of 4)

If any one of the values in the column that we wish to explicitly define has anull value, we
have to use the CAST expression to set the output field type:

Introduction to SQL 37

Graeme Birchall ©

WTH TEMP1 (COL1, COL2) AS ANSVER
(VALUES (0, CAST(' AN AS CHAR(1))) —========
,(1, CAST(’BB AS CHAR(1))) COoLl COL2
,(2, CAST(NULL AS CHAR(1))) —eee e
) 0 A
SELECT * 1B
FROM TEMWPL; 2 -

Figure 88, Use VALUES 0 define a temporary table (3 of 4)

Alternatively, we can set the output type for all of the not-null rows in the column. DB2 will
then use these rows as a guide for defining the whole column:

W TH TEMP1 (COL1, COL2) AS ANSVEER
(VALUES (0, CHAR('AA, 1)) =========
,(1, CHAR('BB,1)) CcoL1l COL2
(2, NULL) T s
) 0 A
SELECT * 1B
FROM TEMP1; 2 -

Figure 89, Use VALUES o define a temporary table (4 of 4)
More Sample SQL

Temporary tables, or (permanent) views, defined using the VALUES expression can be used
much like aDB2 table. They can be joined, unioned, and selected from. They can not, how-
ever, be updated, or have indexes defined on them. Temporary tables can not be used in a
sub-query.

W TH TEMP1 (COL1, COL2, COL3) AS ANSVEER
(VALUES (0, "AA, 0.00) ==========
,(1, 'BB, 1.11) COL1B COLX
(2, 'CC, 2.22) e
) 0 0.00
, TEMP2 (COL1B, COLX) AS 12.11
(SELECT COL1 2 4.22
,COL1 + COL3
FROM TEMP1
)
SELECT *
FROM TEMP2;
Figure 90, Derive one temporary table from another
CREATE VIEW SILLY (Cl1, C2, C3)
AS VALUES (11, ' AAA, SMALLINT(22))
, (12, 'BBB, SMALLINT(33))
, (13, ' CCcC, NULL);
COWM T;
Figure 91, Define a view using a VALUES clause
W TH TEMP1 (COL1) AS ANSVEER
(VALUES 0 ======
UNI ON ALL caLl
SELECT COL1 + 1
FROM TEMP1 0
WHERE COL1 + 1 < 100 1
) 2
SELECT * 3
FROM TEMP1; etc

Figure 92, Use VALUES defined data to seed a recursive SQL statement

38 VALUES Clause

DB2 UDB V8.1 Cookbook ©

CASE Expression

WARNING: The sequence of the CASE conditions can affect the answer. The first WHEN
check that matches is the one used.

CASE expressions enable one to do if-then-else type processing inside of SQL statements.
There are two general flavours of the expression. In the first kind, each WHEN statement
does its own independent checking. In the second kind, al of the WHEN conditions are used
to do "equal” checks against a common reference expression. With both flavours, the first
WHEN that matches is the one chosen.

i WHEN __ search-condition —— THEN result :FL
—E NULL

y CASE — | 4

|__expression iWHEN — expression—— THEN —E result j—L
NULL

END }

 ELSE NULL “

} L ELSE — result J
Figure 93, CASE expression syntax
Notes & Restrictions

¢ If more than one WHEN condition is true, the first one processed that matches is used.

e If no WHEN matches, the value in the EL SE clause applies. If no WHEN matches and
thereis no ELSE clause, theresult isNULL.

¢ Theremust be at least one non-null result in a CASE statement. Failing that, one of the
NULL results must be inside of a CAST expression.

¢ All result values must be of the same type.

¢ Functionsthat have an external action (e.g. RAND) can not be used in the expression part
of a CASE statement.

CASE Flavours

The following CASE is of the kind where each WHEN does an equal check against acom-
mon expression - in this example, the current value of SEX.

SELECT LASTNAME ANSVER
, SEX AS SX —————————————————=—=—=—
, CASE SEX LASTNAME SX SEXX
WHEN ' F THEN ' FEMALE memmememe o m i
WHEN ' M THEN ' MALE JEFFERSON M MALE
ELSE NULL JOHNSON F FEMALE
END AS SEXX JONES M MALE
FROM EMPLOYEE
VWHERE LASTNAME LI KE " J%
ORDER BY 1;

Figure 94, Use CASE (type 1) to expand a value

The next statement is logically the same as the above, but it uses the alternative form of the
CASE notation in order to achieve the same result. In this example, the equal predicateis ex-
plicitly stated rather than implied.

Introduction to SQL 39

SELECT LASTNAME
, SEX AS SX
, CASE
VWHEN SEX
VWHEN SEX
ELSE NULL
END AS SEXX
FROM EMPLOYEE
WHERE LASTNAME LI KE ' J%
ORDER BY 1,

Figure 95, Use CASE (type 2) to expand a value

"F THEN ’ FEMALE
"M THEN ’ MALE

More Sample SQL

SELECT LASTNAME
,MDINNT AS M
, SEX AS SX
, CASE
VHEN M DINIT > SEX
THEN M DI NI'T
ELSE SEX
END AS MX
FROM EMPLOYEE
WHERE LASTNAME LI KE ' J%
CRDER BY 1,

Figure 96, Use CASE to display the higher of two values

SELECT COUNT(*)

Graeme Birchall ©

JOHNSON F FEMALE
JONES M MALE

LASTNAME M SX MX

JEFFERSON J M M
JOHNSON P F P
JONES T M T

AS TOT ANSVEER

, SUM CASE SEX WHEN 'F THEN 1 ELSE 0 END) AS #F =========
, SUM CASE SEX WHEN "M THEN 1 ELSE O END) AS #M TOT #F #M

FROM EMPLOYEE
WHERE LASTNAME LI KE *J% ;

Figure 97, Use CASE to get multiple counts in one pass

SELECT LASTNAME
, SEX
FROM EMPLOYEE
WHERE LASTNAME LI KE ' J%
AND CASE SEX
VWHEN ' F THEN '’
WHEN ' M THEN
ELSE NULL
END I'S NOT NULL
CRDER BY 1,

Figure 98, Use CASE in a predicate

SELECT LASTNAME
, LENGTH(RTRI M LASTNAME)) AS LEN

, SUBSTR(LASTNAME, 1,

CASE

WHEN LENGTH(RTRI M LASTNAME))

> 6 THEN 6
ELSE LENGTH(RTRI M LASTNAVE))

END) AS LASTNM

FROM EMPLOYEE
WHERE LASTNAME LI KE " J%
CRDER BY 1,

Figure 99, Use CASE inside a function

3 1 2

JEFFERSON M
JOHNSON F
JONES M

JEFFERSON 9 JEFFER
JOHNSON 7 JOHNSO
JONES 5 JONES

The CASE expression can also be used in an UPDATE statement to do any one of severa
alternative updates to a particular field in a single pass of the data:

40

CASE Expression

DB2 UDB V8.1 Cookbook ©

UPDATE STAFF
SET COW = CASE DEPT
VWHEN 15 THEN COW * 1.1
VWHEN 20 THEN COWMM * 1.2
VWHEN 38 THEN
CASE
VWHEN YEARS < 5 THEN COWM * 1.3
VWHEN YEARS >= 5 THEN COW * 1.4
ELSE NULL
END
ELSE COW
END
WHERE COWM IS NOT NULL
AND DEPT < 50;

Figure 100, UPDATE statement with nested CASE expressions

W TH TEMP1 (C1, C2) AS ANSVER
(VALUES (88,9),(44,3),(22,0),(0,1)) =====z==
SELECT C1 Ccl @2 c3
,C2 T
, CASE C2 88 9 9
VHEN 0 THEN NULL 44 3 14
ELSE C1/ C2 22 0 -
END AS C3 01 0
FROM TEMPL;

Figure 101, Use CASE to avoid divide by zero

At least one of theresultsin a CASE expression must be non-null. Thisis so that DB2 will
know what output type to make the result. One can get around this restriction by using the
CAST expression. It is hard to imagine why one might want to do this, but it works:

SELECT NAME ANSVEER
] C:ASE s ——
VHEN NAME = LCASE(NAME) THEN NULL NANVE DUVB
ELSE CAST(NULL AS CHAR(1)) mmmmmme —---
END AS DUVB Sanders -
FROM STAFF Per nal -

WHERE 1D < 30;
Figure 102, Slly CASE expression that always returns NULL

Problematic CASE Statements

The case WHEN checks are always processed in the order that they are found. The first one
that matches is the one used. This means that the answer returned by the query can be affected
by the sequence on the WHEN checks. To illustrate this, the next statement uses the SEX

field (which is always either "F* or "M") to create a new field called SXX. In this particular
example, the SQL works as intended.

SELECT LASTNAME ANSVEER
y SEX ==
, CASE LASTNAME SX SXX
WHEN SEX >='M THEN "MAL' eememmaao oo o
VWHEN SEX >= 'F THEN ' FEM JEFFERSON M MAL
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M MAL
WHERE LASTNAME LI KE " J%
CRDER BY 1,

Figure 103, Use CASE to derive a value (correct)

In the example below al of the valuesin SXX field are "FEM". Thisis not the same as what
happened above, yet the only differenceisin the order of the CASE checks.

Introduction to SQL 41

Graeme Birchall ©

SELECT LASTNAME ANSVEER
y SEX ==
, CASE LASTNAME SX SXX
WHEN SEX >= 'F THEN'FEM eemmmmieee oo oo
VWHEN SEX >= "M THEN * VAL’ JEFFERSON M FEM
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M FEM
WHERE LASTNAME LI KE ' J%
CRDER BY 1,

Figure 104, Use CASE to derive a value (incorrect)

In the prior statement the two WHEN checks overlap each other in terms of the values that
they include. Because the first check includes al values that aso match the second, the latter
never getsinvoked. Note that this problem can not occur when al of the WHEN expressions
are equality checks.

42 CASE Expression

DB2 UDB V8.1 Cookbook ©

Column Functions

Introduction

By themselves, column functions work on the complete set of matching rows. One can use a
GROUPBY expression to limit them to a subset of matching rows. One can also usethemin
an OLAP function to treat individual rows differently.

WARNING: Be very careful when using either a column function, or the DISTINCT clause,
in a join. If the join is incorrectly coded, and does some form of Cartesian Product, the
column function may get rid of the all the extra (wrong) rows so that it becomes very hard
to confirm that the answer is incorrect. Likewise, be appropriately suspicious whenever
you see that someone (else) has used a DISTINCT statement in a join. Sometimes, users
add the DISTINCT clause to get rid of duplicate rows that they didn't anticipate and don't
understand.

Column Functions, Definitions

AVG

Get the average (mean) value of a set of non-null rows. The columns(s) must be numeric.
ALL isthe default. If DISTINCT is used duplicate values are ignored. If no rows match, the
null value is returned.

ALL
F AVG [expression
(L_DISTINCT P) }
Figure 105, AVG function syntax
SELECT AVE DEPT) AS Al ANSVEER
,AVG(ALL DEPT) AS A2 —==—=—=—=—===—=====
, AV DI STI NCT DEPT) AS A3 Al A2 A3 A4 A5
, AV DEPT/ 10) AS A4 ce e e o
, AV DEPT)/ 10 AS A5 41 41 40 3 4

FROM STAFF
HAVING AVG DEPT) > 40;

Figure 106, AVG function examples

WARNING: Observe columns A4 and A5 above. Column A4 has the average of each
value divided by 10. Column A5 has the average of all of the values divided by 10. In the
former case, precision has been lost due to rounding of the original integer value and the
result is arguably incorrect. This problem also occurs when using the SUM function.

Averaging Null and Not-Null Values

Some database designers have an intense and irrational dislike of using nullable fields. What
they do instead is define al columns as not-null and then set the individual fields to zero (for
numbers) or blank (for characters) when the value is unknown. This solution is reasonablein
some situations, but it can cause the AV G function to give what is arguably the wrong an-
Swer.

One solution to this problem is some form of counseling or group therapy to overcome the
phobia. Alternatively, one can use the CASE expression to put null values back into the an-
swer-set being processed by the AVG function. The following SQL statement uses a modified
version of the IBM sample STAFF table (all null COMM values were changed to zero) to
illustrate the technique:

Column Functions 43

Graeme Birchall ©

UPDATE STAFF
SET COMW = 0
WHERE COWM IS NULL,;

SELECT AV SALARY) AS SALARY ANSVEER
s AVG(COV'W AS COvML —————————=—=—=—=—======
, AV CASE COW SALARY COwL COvMR
VHEN O THEN NULL emmmmee mmme e aee o
ELSE COwWM 16675.6 351.9 513.3
END) AS COVWR
FROM STAFF,;

UPDATE STAFF
SET COWM = NULL
VWHERE COW = 0;
Figure 107, Convert zero to null before doing AVG

The COMM2 field above is the correct average. The COMM 1 field isincorrect because it has
factored in the zero rows with really represent null values. Note that, in this particular query,
one cannot use a WHERE to exclude the "zero" COMM rows because it would affect the av-
erage salary value.

Dealing with Null Output

The AVG, MIN, MAX, and SUM functions all return a null value when there are no match-
ing rows. One use the COALESCE function, or a CASE expression, to convert the null value
into a suitable substitute. Both methodologies are illustrated below:

SELECT COUNT(*) AS Cl ANSVER
7AV(_‘-,(SALARY) AS Al —==========
. COALESCE(AVG(SALARY) , 0) AS A2 ClL Al A2 A3
, CASE N
WHEN AVGE SALARY) |S NULL THEN O 0O - 0 O
ELSE AVG SALARY)
END AS A3
FROM STAFF
VWHERE ID < 10;

Figure 108, Convert null output (from AVG) to zero
AVG Date/Time Values

The AV G function only accepts numeric input. However, one can, with a bit of trickery, also
use the AV G function on a date field. First convert the date to the number of days since the
start of the Current Era, then get the average, then convert the result back to a date. Please be
aware that, in many cases, the average of a date does not really make good business sense.
Having said that, the following SQL gets the average birth-date of all employees:

SELECT AV DAYS(Bl RTHDATE)) ANSVER
, DATE(AVE(DAYS(Bl RTHDATE))) =================
FROM EMPLOYEE; 1 2

709113 06/ 27/ 1942
Figure 109, AVG of date column

Time data can be manipulated in a similar manner using the MIDNIGHT_SECONDS func-
tion. If oneisreally desperate (or silly), the average of a character field can also be obtained
using the ASCII and CHR functions.

Average of an Average

In some cases, getting the average of an average gives an overflow error. Inasmuch as you
shouldn't do this anyway, it is no big deal:

44 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT AVGAVG SAL) AS AVG AVG ANSVER
FROM (SELECT DEPT ——==============
, AV SALARY) AS AVG SAL <Overflow error>
FROM STAFF
GROUP BY DEPT
) AS XXX:

Figure 110, Select average of average

CORRELATION

| don't know athing about statistics, so | haven't a clue what this function does. But | do know
that the SQL Reference iswrong - because it says the value returned will be between 0 and 1.
| found that it is between -1 and +1 (see below). The output typeisfloat.

}—[CORRELATION (expression , expression) }
CORR
Figure 111, CORRELATION function syntax

WTH TEMP1(COL1, COL2, COL3, COL4) AS ANSVEER
(VALUES (0 , 0 , 0 , RAND(]_)) === ———c——————c—c—————c——————=—
UNI ON ALL COR11 COR12 COR23 COR34
SELECT COL1 + 1 emeeee mmmmme mmmmee mea-
,CaL2 - 1 1.000 -1.000 -0.017 -0.005
, RAND()
, RAND()
FROM TEMP1
WHERE COL1 <= 1000

)
SELECT DEC(CORRELATI ON(COL1, COL1)

,5,3) AS CORL1
, DEC(CORRELATI ON(COL1, COL2), 5,3) AS CORI2
, DEC{ CORRELATI ON(COL2, COL3), 5,3) AS COR23
, DEC(CORRELATI ON(COL3, COL4) , 5,3) AS COR34

FROM TEMP1;
Figure 112, CORRELATION function examples

COUNT

Get the number of valuesin a set of rows. Theresult is an integer. The value returned depends
upon the options used:

e COUNT(*) gets acount of matching rows.

¢ COUNT (expression) gets a count of rows with a non-null expression value.

e COUNT(ALL expression) isthe same as the COUNT (expression) statement.

e COUNT(DISTINCT expression) gets a count of distinct non-null expression values.

ALL
i
F COUNT (SISTINGT expression) }

*

Figure 113, COUNT function syntax

SELECT COUNT(*) AS Cl ANSVER
s COJNT(| NT(Ccowr 10)) AS C2 ————————————=—=——=—=
, COUNT(ALL | NT(COW 10)) AS C3 ClCCG3cACCCo
" COUNT(DI STI NCT | NT(COMM 10)) AS CA bt
, COUNT(DI STI NCT | NT(COW)) AS C5 35 24 24 19 24 2
" GOUNT(DI STI NCT | NT(COWM)/ 10 AS Cb

FROM STAFF,;

Figure 114, COUNT function examples

Column Functions 45

Graeme Birchall ©

There are 35 rows in the STAFF table (see C1 above), but only 24 of them have non-null
commission values (see C2 above).

If no rows match, the COUNT returns zero - except when the SQL statement also contains a
GROUPBY . Inthislatter case, the result is no row.

SELECT 'NO GP-BY' AS Cl ANSVER

FROM STAFF c1 I
WHERE ID=-1 e
UNI ON NO GP-BY 0

SELECT ' GROUP-BY' AS Cl
, COUNT(*) AS C2

FROM STAFF

WERE ID=-1

GROUP BY DEPT;

Figure 115, COUNT function with and without GROUP BY

COUNT _BIG

Get the number of rows or distinct values in a set of rows. Use this function if the result istoo
large for the COUNT function. Theresult is of type decimal 31. If the DISTINCT option is
used both duplicate and null values are eliminated. If no rows match, the result is zero.

ALL
i
F COUNT_BIG (SISTINGT expression) }

*

Figure 116, COUNT _BIG function syntax

SELECT COUNT_BI ¢(*) AS Cl1 ANSVEER
, COUNT_BI G(DEPT) AS C2 ————————————————=—==
, COUNT_BI G(DI STI NCT DEPT) AS C3 CL &2 &3 &4
" COUNT_BI G DI STI NCT DEPT/ 10) AS C4
, COUNT_BI G(DI STI NCT DEPT)/ 10 AS C5 35. 356. 8 7. O.
FROM STAFF;

Figure 117, COUNT _BIG function examples

COVARIANCE

Returns the covariance of a set of number pairs. The output type is float.

}—[COVARIANCE (expression , expression) }
COVAR
Figure 118, COVARIANCE function syntax

WTH TEMP1(Cl, C2, C3, C4) AS ANSVER
(VALUES (0, 0, 0, RAND(1)) BRSSP P E E E EE
UNI ON ALL CoOv1l Covi2 Cov23 Cov34
SELECT C1 + 1 e mmmmmms mmmmmn mmam--
,C2 -1 83666. -83666. -1.4689 -0.0004
, RANIX()
» RANI()
FROM TEMP1
WHERE Cl1 <= 1000

)
SELECT DEC(COVARI ANCE(Cl, C1),6,0) AS COV1l
, DEC{ COVARI ANCE(C1, C2), 6,0) AS COV12
, DEC{ COVARI ANCE(C2, C3), 6,4) AS COV23
, DEC{ COVARI ANCE(C3, C4), 6, 4) AS COV34
FROM TEMP1;
Figure 119, COVARIANCE function examples

46 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

GROUPING

The GROUPING function is used in CUBE, ROLLUP, and GROUPING SETS statements to
identify what rows come from which particular GROUPING SET. A value of 1 indicates that
the corresponding data field is null because the row isfrom of a GROUPING SET that does
not involve this row. Otherwise, the valueis zero.

F GROUPING (

Figure 120, GROUPING function syntax

expression) }

SELECT DEPT ANSVER
, AVG(SALARY) AS SALARY ———————=—=—=—=—=—====
, GROUPI NG DEPT) AS DF DEPT SALARY DF
FROM STAFF e eeeee e o
GROUP BY ROLLUP(DEPT) 10 20865.86 O
ORDER BY DEPT; 15 15482.33 O
20 16071.52 O
38 15457.11 O
42 14592.26 O
51 17218.16 O
66 17215.24 O
84 16536.75 O
1

Figure 121, GROUPING function example

NOTE: See the section titled "Group By and Having" for more information on this function.

MAX

Get the maximum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null valueis returned.

ALL
F MAX [expression
(L__DISTINCT — P) }
Figure 122, MAX function syntax
SELECT MAX(DEPT) ANSWER
, MAX(DI STI NCT DEPT) 1 2 3 4
, MAX(DI STI NCT DEPT/ 10)
FROM STAFF; 84 84 84 8

Figure 123, MAX function examples
MAX and MIN usage with Scalar Functions

Several DB2 scalar functions convert a value from one format to another, for example from
numeric to character. The function output format will not always shave the same ordering
sequence as the input. This difference can affect MIN, MAX, and ORDER BY processing.

SELECT MAX(HI REDATE) ANSVER
, CHAR(I\/AX(Hi REDATE) , USA) ———————————————————————————=—=—===
. MAX(CHAR(Hl REDATE, USA)) 1 2 3

FROM EVPLOYEE, emeemmeoie mmiiiiin oo
09/ 30/ 1980 09/ 30/ 1980 12/ 15/ 1976

Figure 124, MAX function with dates

In the above the SQL, the second field gets the MAX before doing the conversion to character
whereas the third field works the other way round. In most cases, the later iswrong.

In the next example, the MAX function is used on asmall integer value that has been con-
verted to character. If the CHAR function is used for the conversion, the output is left justi-
fied, which results in an incorrect answer. The DIGITS output is correct (in this example).

Column Functions 47

Graeme Birchall ©

SELECT MAX(| D) AS I D ANSVER
, |\/AX(CHAR(| D)) AS CHR ——=—=—=—=—=—=—=—=—==—=—===—===
'MAX(DI G TS(1D)) AS DI G ID CHR DG
FROM STAFF; o Tlo Tl o
350 90 00350

Figure 125, MAX function with numbers, 1 of 2

The DIGITS function can also give the wrong answer - if the input datais part positive and
part negative. Thisis because this function does not put asign indicator in the output.

SELECT MAX(ID - 250) AS ID ANSVER
, MAX(CHAR(I D - 250)) AS CHR ———=—=—=—=—=—=—=—==—=—=—=—======
"MAX(DI G TS(I1D - 250)) AS DI G ID CHR DIG

FROM 'STAFF, Ll il .

100 90 0000000240
Figure 126, MAX function with numbers, 2 of 2

WARNING: Be careful when using a column function on a field that has been converted
from number to character, or from date/time to character. The result may not be what you
intended.

MIN

Get the minimum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null valueis returned.

ALL

F MIN [expression
(L DISTINCT — P) }
Figure 127, MIN function syntax
SELECT M N(DEPT) ANSVEER
5 M N(ALL DEPT) e p————
, M N(DI STI NCT DEPT) 1 2 3 4
, M N(DI STI NCT DEPT/ 10)
FROM STAFF; 10 10 10 1

Figure 128, MIN function examples

REGRESSION

The various regression functions support the fitting of an ordinary-least-squares regression
line of theformy = a* x + b to aset of number pairs.

V— REGR_AVGX —— (——expression, expression —) —}
—— REGR_AVGY

—— REGR_COUNT
REGR_INTERCEPT

—[REGR_ICPT J

- REGR_R2

—— REGR_SLOPE

- REGR_SXX

- REGR_SXY

L—— REGR_SYY
Figure 129, REGRESS ON functions syntax

48 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Functions

¢ REGR_AVGX returns aquantity that than can be used to compute the validity of the re-
gression model. The output is of type float.

* REGR_AVGY (see REGR_AVGX).

e REGR_COUNT returns the number of matching non-null pairs. The output isinteger.
¢ REGR_INTERCEPT returnsthe y-intercept of the regression line.

* REGR_R2 returns the coefficient of determination for the regression.

« REGR_SLOPE returnsthe slope of theline.

e REGR_SXX (see REGR_AVGX).

+ REGR_SXY (see REGR_AVGX).

e REGR_SYY (see REGR_AVGX).

Seethe IBM SQL Reference for more details on the above functions.

ANSVERS
SELECT DEC(REGR_SLOPE(BONUS, SALARY) ,7,5) AS R SLOPE 0.01710
, DEC(REGR_| NTERCEPT(BONUS, SALARY) , 7,3) AS R | CPT 100. 871
. I NT(REGR_COUNT(BONUS, SALARY)) AS R_COUNT 3
. I NT(REGR_AVGX(BONUS, SALARY)) AS R _AVGX 42833
. | NT(REGR_AVGY(BONUS, SALARY)) AS R_AVGY 833
, I NT(REGR_SXX(BONUS, SALARY)) AS R SXX 296291666
. | NT(REGR_SXY(BONUS, SALARY)) AS R_SXY 5066666
, I NT(REGR_SYY(BONUS, SALARY)) AS R SYY 86666

FROM EMPLOYEE
WHERE WORKDEPT = ' A0Q’ ;

Figure 130, REGRESSON functions examples

STDDEV

Get the standard deviation of a set of numeric values. If DISTINCT is used, duplicate values
areignored. If no rows match, the result is null. The output format is double.

F STDDEV (ESILSLTINCT—J expression) }
Figure 131, STDDEYV function syntax
ANSVER
A ST s2 s3 s4
SELECT AVG(DEPT) AS Al 41 +2.3522355E+1 23.5 23.5 24. 1

, STDDEV(DEPT) AS S1

, DEC(STDDEV(DEPT) , 3, 1) AS S2

, DEC(STDDEV(ALL DEPT), 3,1) AS S3

, DEC(STDDEV(DI STI NCT DEPT), 3, 1) AS S4
FROM STAFF;

Figure 132, STDDEYV function examples

SUM

Get the sum of a set of numeric values If DISTINCT is used, duplicate values are ignored.
Null values are always ignored. If no rows match, the result is null.

Column Functions 49

Graeme Birchall ©

ALL
F SUM [expression
(L DISTINCT — P) }
Figure 133, SUM function syntax
SELECT SUM DEPT) AS S1 ANSVEER
, SUM ALL DEPT) AS S2 —————=——————=————=——=——=—=—===
, SUM DI STI NCT DEPT) AS S3 S1 S2 S3 4 S5
, SUM DEPT/ 10) AS $4 R L E R I
, SUM DEPT) / 10 AS S5 1459 1459 326 134 145
FROM STAFF,;

Figure 134, SUM function examples

WARNING: The answers S4 and S5 above are different. This is because the division is
done before the SUM in column S4, and after in column S5. In the former case, precision
has been lost due to rounding of the original integer value and the result is arguably incor-
rect. When in doubt, use the S5 notation.

VAR or VARIANCE

Get the variance of a set of numeric values. If DISTINCT is used, duplicate values are ig-
nored. If no rows match, the result is null. The output format is double.

ALL

VARIANCE [] expression
>—[VAR (T pistineT P) }
Figure 135, VARIANCE function syntax
ANSVER
ALVL V2 V3 V4
SELECT AVG(DEPT) AS Al 41 +5.533012244E+2 553 553 582

, VARl ANCE(DEPT) AS S1

, DEC(VARI ANCE(DEPT) , 4, 1) AS S2

, DEC(VARI ANCE(ALL DEPT), 4, 1) AS S3

, DEC(VARI ANCE(DI STI NCT DEPT), 4, 1) AS S4
FROM STAFF;

Figure 136, VARIANCE function examples

50 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

OLAP Functions

Introduction

The OLAP (Online Analytical Processing) functions enable one sequence and rank query
rows. They are especially useful in those environments, like some web servers, where the
calling program is unable to do much processing logic.

The Bad Old Days

To really appreciate the value of the OLAP functions, one should try to do some seemingly
trivial task without them. To illustrate this point, below is asimple little query:

SELECT S1.J0B, S1.1D, S1.SALARY ANSVEER
FROM STAFF S1 —=========—=======
WHERE S1. NAME LI KE * %% JOB | D SALARY
AND S1.ID < 9 Do DT
CRDER BY S1.J0B Clerk 80 13504. 60
,S1.1D; Myr 10 18357.50

Myr 50 20659. 80
Figure 137, Select rows from STAFF table

Let us now add two fields to this query:
e A running sum of the salaries selected.
¢ A running count of the rows retrieved.

Adding these fields is easy - when using OLAP functions:

SELECT S1.JOB, S1.1D, Sl.SALARY
, SUM SALARY) OVER(ORDER BY JOB, ID) AS SUMVBAL
, ROW NUVBER() OVER(ORDER BY JOB, ID) AS R

FROM STAFF S1 ANSVER
VWHERE S1. NAME LI KE ' %% ——===—==—=—=—=—=—=—=—==—===—====—======
AND S1.1D < 90 JOoB | D SALARY SUMSAL R
ORDER BY S1.JOB eeeee ee mmmmmmee mmmemea- -
, S1. 1D Clerk 80 13504.60 13504.60 1

Myr 10 18357.50 31862.10 2
Mr 50 20659. 80 52521.90 3

Figure 138, Using OLAP functions to get additional fields

But imagine that we don't have OLAP functions, or we are too stupid to figure out how to use
them, or we are getting paid by the hour. We can still get the required answer, but the code is
quite tricky. The problem is that this seemingly simple query contains two nasty tricks:

¢ Not dl of therowsin the table are sel ected.
e Theoutput is ordered on two fields, the first of which is not unique.

Below are several examples that use plain SQL to get the above answer. All of the examples
have the same generic design (i.e. join each matching row to itself and al previous matching
rows) and share similar problems (i.e. difficult to read, and poor performance).

Nested Table Expression

Below is aquery that uses a nested table expression to get the additional fields. This SQL has
the following significant features:

e« TheTABLE phraseis required because the nested table expression has a correlated refer-
ence to the prior table. See page 32 for more details on the use of this phrase.

OLAP Functions 51

Graeme Birchall ©

e Thereare nojoin predicates between the nested table expression output and the original
STAFF table. They are unnecessary because these predicates are provided in the body of
the nested table expression. With them there, and the above TABLE function, the nested
table expression is resolved once per row obtained from the STAFF Sl table.

e Theorigind literal predicates have to be repeated in the nested table expression.

e Thecorrelated predicates in the nested table expression have to match the ORDER BY
sequence (i.e. first JOB, then ID) in the fina output.
Now for the query:

SELECT S1.J0B, S1.1D, S1. SALARY
, XX, SUMBAL, XX. #ROVG

FROM STAFF S1
, TABLE
(SELECT SUM S2. SALARY) AS SUMSAL
COUNT(* AS R

FROM STAFF S2
WHERE S2. NAME LI KE ' %%

AND S2.1D < 90
AND (S2.J0B < S1.J0B
OR (S2.J08B = S1.J0B ANSVER

AND S2.1D <= S1.1 D)) ——=—=—=——=—=—=——=—=—=—=—=—=—=—=—=—=—=—=—=—=—====
) AS XX JOB | D SALARY SUVBAL R
VWHERE S1.NAME LIKE "9%% = meeme em mmeoie aoaooe -
AND S1.1D < 90 Clerk 80 13504.60 13504.60 1
ORDER BY S1.J0B Myr 10 18357.50 31862.10 2
, S1. 1D Myr 50 20659. 80 52521.90 3

Figure 139, Using Nested Table Expression to get additional fields
Ignoring any readability issues, this query has some major performance problems:

e The nested table expression is a partial Cartesian product. Each row fetched from "S1" is
joined to al prior rows (in "S2"), which quickly getsto be very expensive.

e Thejoin criteriamatch the ORDER BY fields. If the latter are suitably complicated, then
the joinis going to be inherently inefficient.

Self-Join and Group By

In the next example, the STAFF tableisjoined to itself such that each matching row obtained

from the"S1" table isjoined to al prior rows (plus the current row) in the "S2" table, where

"prior" isafunction of the ORDER BY clause used. After the join, a GROUP BY is needed
in order to roll up the matching "S2" rows up into one:

SELECT S1.J0B, S1.1D, Sl1.SALARY ANSVER
, SUN[S2. SALARY) AS SUMSAL ———————————————————————=—=—===
, COUNT(*) AS R JOoB | D SALARY SUVBAL R
FROM STAFF S1 eeeme em ememe e amea oo -
, STAFF S2 Clerk 80 13504.60 13504.60 1
VWHERE S1. NAME LI KE " %% Myr 10 18357.50 31862.10 2
AND S1.1D < 90 Myr 50 20659. 80 52521.90 3
AND S2. NAME LI KE ' %%
AND S2.1D < 90
AND (S2.J08B < S1.J0B
OR (S2.J0B = S1.J0B
AND S2.1D <= S1.1D))
GROUP BY S1.J0B
,S1. 1D
, S1. SALARY
ORDER BY S1.J0B
, S1.1D;

Figure 140, Using Salf-Join and Group By to get additional fields

52 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Nested Table Expressions in Select

In our final example, two nested table expression are used to get the answer. Both are donein
the SELECT part of the main query:

SELECT S1.JOB, S1.1D, SI1.SALARY
, (SELECT SUM S2. SALARY)
FROM STAFF S2
WHERE S2. NAME LI KE ’' %%

AND S2.1D < 90

AND (S2.JO0B < S1.J0B

OR (S2.J0B = S1.J0B

AND S2.1D <= S1.1D))) AS SUVBAL

, (SELECT COUNT(*)
FROM STAFF S3
WHERE S3. NAME LI KE ' %%
AND S3.1D < 90
AND (S3.J0B < S1.J0B
OR (S3.J0B = S1.J0B
AND S3.1D <= S1.1D))) AS R
FROM STAFF S1
VWHERE S1. NAME LI KE ' %% ANSVER
AND S1.1D < 90 —==—=—=—=—=—=—=—=—=—=-=—=—=—=-=—=—=—=—========
ORDER BY S1.J0B JOoB | D SALARY SUVBAL R
T 1 I T D S e

Myr 10 18357.50 31862.10 2
Myr 50 20659. 80 52521.90 3

Figure 141, Using Nested Table Expressions in Select to get additional fields

Once again, this query processes the matching rows multiple times, repeats predicates, has
join predicates that match the ORDER BY, and does a partial Cartesian product. The only
difference here is that this query commits all of the above sins twice.

Conclusion

Almost anything that an OLAP function does can be done some other way using simple SQL.
But as the above examples illustrate, the aternatives are neither pretty nor efficient. And re-
member that the initial query used above was actually very simple. Feel freeto try replacing
the OLAP functions in the following query with their SQL equivalents:

SELECT DPT. DEPTNAME
, EMP. EMPNO
, EMP. LASTNAME
, EMP. SALARY
, SUM SALARY) OVER(CORDER BY DPT. DEPTNAME ASC
, EMP. SALARY DESC
, EMP. EMPNO ASC) AS SUVMBAL
, ROW NUMBER() OVER(ORDER BY DPT. DEPTNAME ASC
, EMP. SALARY DESC
, EMP. EMPNO ASC) AS ROM
FROM EMPLOYEE EMP
, DEPARTMENT DPT
WHERE EMP. FI RSTNMVE LI KE ’ %8%
AND EMP. WORKDEPT = DPT. DEPTNO
AND DPT. ADMRDEPT LI KE ' A%
AND NOT EXI STS

(SELECT *
FROM EMP_ACT EAT
WHERE EMP. EMPNO = EAT. EMPNO

AND EAT. EMPTI ME > 10)
CRDER BY DPT. DEPTNAME ASC
, EMP. SALARY DESC
, EMP. EMPNO ASC;

Figure 142, Complicated query using OLAP functions

OLAP Functions 53

Graeme Birchall ©

OLAP Functions, Definitions

Ranking Functions

The RANK and DENSE_RANK functions enable one to rank the rows returned by a query.
The result is of type BIGINT.

>E RANK()
DENSE_RANK() j
L PARTITION BY ipartitioning expression JJ

OVER(}

asc option
D ORDERBY gsort-key expression [2°C OO]))

| desc optionJ

asc option

[NULLS LAST —|
} ASC | NULLS FIRST _| }

desc option

[NULLS FIRST |
’ DESC | NULLS LAST | }

Figure 143, Ranking Functions syntax

NOTE: The ORDER BY phrase, which is required, is used to both sequence the values,
and to tell DB2 when to generate a new value. See page 55 for details.

RANK vs. DENSE_RANK
The two functions differ in how they handle multiple rows with the same value:

¢ The RANK function returns the number of proceeding rows, plus one. If multiple rows
have equal values, they all get the same rank, while subsequent rows get a ranking that
counts all of the prior rows. Thus, there may be gaps in the ranking sequence.

¢« TheDENSE_RANK function returns the number of proceeding distinct values, plus one.
If multiple rows have equal values, they al get the same rank. Each changein datavalue
causes the ranking number to be incremented by one.

The following query illustrates the use of the two functions:

54 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT

FROM

WHERE
AND

ORDER

I D
, YEARS
, SALARY
, RANK() OVER(ORDER BY YEARS) AS RANK#
, DENSE_RANK() OVER(ORDER BY YEARS) AS DENSE#
, ROW NUMBER() OVER(ORDER BY YEARS) AS ROW
STAFF
| D < 100
YEARS |'S NOT NULL ANSVER
BY YEARS;
| D YEARS SALARY
30 5 17506. 75
40 6 18006. 00
90 6 18001. 75
10 7 18357. 50
70 7 16502. 83
20 8 18171.25
50 10 20659. 80

Figure 144, Ranking functions example

ORDER BY Usage

The ORDER BY phrase, which is mandatory, gives a sequence to the ranking, and also tells
DB2 when to start a new rank value. The following query illustrates both uses:

SELECT

FROM

WHERE
AND
AND

CRDER

AS
AS

AS

AS

AS

AS

AS

AS

ASC1
ASC2

ASC3

DSC1

DSC2

DSC3

M X1

M X2

DSC1 DSC2 DSC3 M X1 M X2

JOB
, YEARS
,ID
, NAME
, SMALLI NT(RANK() OVER(ORDER BY JOB ASC))
, SMALLI NT(RANK() OVER(ORDER BY JOB ASC
, YEARS ASC))
, SMALLI NT(RANK() OVER(ORDER BY JOB ASC
, YEARS ASC
,ID ASC))
, SMALLI NT(RANK() OVER(ORDER BY JOB DESC))
, SMALLI NT(RANK() OVER(ORDER BY JOB DESC
, YEARS DESC))
, SMALLI NT(RANK() OVER(ORDER BY JOB DESC
, YEARS DESC
,ID DESC))
, SMALLI NT(RANK() OVER(ORDER BY JOB ASC
, YEARS DESC
,ID ASC))
, SMALLI NT(RANK() OVER(ORDER BY JOB DESC
, YEARS ASC
,ID DESC))
STAFF
I D < 150
YEARS IN (6,7)
JOB > Ll
BY JOB
, YEARS
1D,
ANSVEER
JOB YEARS I D NAME ASC1 ASC2 ASC3
Myr 6 140 Fraye 1 1 1 4
Myr 7 10 Sanders 1 2 2 4
Myr 7 100 Plotz 1 2 3 4
Sal es 6 40 OBrien 4 4 4 1
Sal es 6 90 Koonitz 4 4 5 1
Sal es 7 70 Rot hman 4 6 6 1

Figure 145, ORDER BY usage

OLAP Functions

PNNBARO

PNWAOIO

~AOCINFW

55

Graeme Birchall ©

Observe above that adding more fields to the ORDER BY phrase resulted in more ranking
values being generated.

Ordering Nulls

When writing the ORDER BY/, one can optionally specify whether or not null values should
be counted as high or low. The default, for an ascending field is that they are counted as high
(i.e. come last), and for a descending field, that they are counted as low:

SELECT ID
, YEARS AS YR
, SALARY
, DENSE_RANK() OVER(ORDER BY YEARS ASC) AS A

, DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS FIRST) AS AF

, DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS LAST) AS AL

, DENSE_RANK() OVER(ORDER BY YEARS DESC) AS D

, DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS FI RST) AS DF

, DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS LAST) AS DL
FROM STAFF

VWHERE I D < 100
ORDER BY YEARS ANSVER
, SALARY; ——————————————————————————————=—=—=—=
I D YR SALARY A AF AL DF DL
30 5 17506.75 1 2 1 6 6 5
90 6 18001.75 2 3 2 5 5 4
40 6 18006. 00 2 3 2 5 5 4
70 7 16502. 83 3 4 3 4 4 3
10 7 18357.50 3 4 3 4 4 3
20 8 18171.25 4 5 4 3 3 2
50 10 20659. 80 5 6 5 2 2 1
80 - 13504.60 6 1 6 1 1 6
60 - 16808. 30 6 1 6 1 1 6

Figure 146, Overriding the default null ordering sequence

In general, in arelationa database one null value does not equal another null value. But, asis
illustrated above, for purposes of assigning rank, all null values are considered equal.

NOTE: The ORDER BY used in the ranking functions (above) has nothing to do with the
ORDER BY at the end of the query. The latter defines the row output order, while the for-
mer tells each ranking function how to sequence the values. Likewise, one cannot define
the null sort sequence when ordering the rows.

Counting Nulls

The DENSE RANK and RANK functions include null values when calculating rankings. By
contrast the COUNT DISTINCT statement excludes null values when counting values. Thus,
asisillustrated below, the two methods will differ (by one) when they are used get a count of
distinct values - if there are nullsin the target data:
SELECT COUNT(DI STI NCT YEARS) AS Y#1
, MAX(Y#) AS Y#2

FROM (SELECT YEARS
, DENSE_RANK() OVER(ORDER BY YEARS) AS Y#

FROM STAFF
VWHERE 1D < 100
) AS XXX ANSVER
ORDER BY 1; —======
Y#1 Y#2
5 6

Figure 147, Counting distinct values - comparison

56 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

PARTITION Usage

The PARTITION phrase lets one rank the data by subsets of the rows returned. In the follow-

ing example, the rows are ranked by salary within year:

SELECT I D ANSVER
, YEARS AS YR ———=———=—=——=—=—=—=—====
, SALARY I D YR SALARY R1
, RANK() OVER(PARTI TI ON BY YEARS e --
ORDER BY SALARY) AS R1 30 5 17506.75 1
FROM STAFF 40 6 18006.00 1
VWHERE I D < 80 70 7 16502.83 1
AND YEARS |'S NOT NULL 10 7 18357.50 2
ORDER BY YEARS 20 8 18171.25 1
, SALARY; 50 0 20659.80 1

Figure 148, Values ranked by subset of rows
Multiple Rankings

One can do multiple independent rankings in the same query:

SELECT ID
, YEARS
, SALARY
, SVALLI NT(RANK() OVER(ORDER BY YEARS ASC)) AS RANK_A
, SMALLI NT(RANK() OVER(ORDER BY YEARS DESC)) AS RANK_D
, SVALLI NT(RANK() OVER(ORDER BY 1D, YEARS)) AS RANK_|Y

FROM STAFF

WHERE ID < 100

AND YEARS I'S NOT NULL
ORDER BY YEARS;

Figure 149, Multiple rankings in same query
Dumb Rankings
If one wants to, one can do some really dumb rankings. All of the examples below are fairly

stupid, but arguably the dumbest of thelot isthe last. In this case, the "ORDER BY 1" phrase

ranks the rows returned by the constant "“one", so every row gets the same rank. By contrast
the "ORDER BY 1" phrase at the bottom of the query sequences the rows, and so has valid
business meaning:

SELECT ID
, YEARS
, NAMVE
, SALARY
, SMALLI NT(RANK() OVER(ORDER BY SUBSTR(NAME, 3,2))) AS DUMBL
. SVALLI NT(RANK() OVER(ORDER BY SALARY / 1000)) AS DUVB2

, SMALLI NT(RANK() OVER(ORDER BY YEARS * |D)) AS DUMB3
, SVALLI NT(RANK() OVER(ORDER BY RAND())) AS DUVB4
, SMALLI NT(RANK() OVER(ORDER BY 1)) AS DUMB5

FROM STAFF

VWHERE I D < 40

AND YEARS |'S NOT NULL
ORDER BY 1;
Figure 150, Dumb rankings, SQL

ID YEARS NAME SALARY DUVMB1 DuUvB2 DUVB3 DUVB4 DUMBS

10 7 Sanders 18357. 50 1 3 1 1 1

20 8 Pernal 18171. 25 3 2 3 3 1

30 5 Marenghi 17506. 75 2 1 2 2 1

Figure 151, Dumb ranking, Answer

OLAP Functions

57

Graeme Birchall ©

Subsequent Processing

The ranking function gets the rank of the value as of when the function was applied. Subse-
guent processing may mean that the rank no longer makes sense. To illustrate this point, the
following query ranks the same field twice. Between the two ranking calls, some rows were
removed from the answer set, which has caused the ranking results to differ:

SELECT XXX, * ANSVER
, RANK() O\/ER(ORDER BY | D) AS R2 ————————————=—=—==
FROM (SELECT 1D I D NAVE Rl R2
,NAME e e o -
' RANK() OVER(ORDER BY D) AS Rl 40 OBrien 4 1
FROM STAFF 50 Hanes 5 2
WHERE 1D < 100 70 Rothman 6 3
AND YEARS |'S NOT NULL 90 Koonitz 7 4
) AS XXX
VWHERE ID > 30
ORDER BY I D;

Figure 152, Subsequent processing of ranked data
Ordering Rows by Rank

One can order the rows based on the output of aranking function. This can let one sequence
the data in ways that might be quite difficult to do using ordinary SQL. For example, in the
following query the matching rows are ordered so that all those staff with the highest salary in
their respective department come first, followed by those with the second highest salary, and
so on. Within each ranking value, the person with the highest overall salary islisted first:

SELECT I D ANSVEER
, RANK() OVER(PARTI TI ON BY DEPT =================
ORDER BY SALARY DESC) AS R1 ID Rl SALARY DP
, SALARY ee e e
, DEPT AS DP 50 1 20659.80 15
FROM STAFF 10 1 18357.50 20
WHERE I D < 80 40 1 18006.00 38
AND YEARS |'S NOT NULL 20 2 18171.25 20
CRDER BY R1 ASC 30 2 17506.75 38
, SALARY DESC; 70 2 16502.83 15

Figure 153, Ordering rows by rank, using RANK function

Hereis the same query, written without the ranking function:

SELECT I D ANSVEER
, (SELECT CQJNT(*) ——=—=—=—=——=—=—=—=—=—=—=—===
FROM STAFF S2 I D Rl SALARY DP
WHERE S2.1D <80 e e eeeeaaae -
AND S2. YEARS IS NOT NULL 50 1 20659.80 15
AND S2. DEPT = S1. DEPT 10 1 18357.50 20
AND S2. SALARY >= S1. SALARY) AS R1 40 1 18006.00 38
, SALARY 20 2 18171.25 20
, DEPT AS DP 30 2 17506.75 38
FROM STAFF S1 70 2 16502.83 15
VWHERE I D < 80
AND YEARS |'S NOT NULL
ORDER BY R1 ASC
, SALARY DESC,

Figure 154, Ordering rows by rank, using sub-query
The above query has all of the failings that were discussed at the beginning of this chapter:

¢ The nested table expression has to repeat all of the predicates in the main query, and have
predicates that define the ordering sequence. Thusit is hard to read.

* Thenested table expression will (inefficiently) join every matching row to al prior rows.

58 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Selecting the Highest Value

The ranking functions can also be used to retrieve the row with the highest value in a set of
rows. To do this, one must first generate the ranking in anested table expression, and then
guery the derived field later in the query. The following statement illustrates this concept by
getting the person, or persons, in each department with the highest salary:

SELECT ID ANSVER
. DEPT AS DP ID SALARY DP
FROM (SELECT SI.* ce e --
, RANK() OVER(PARTI TI ON BY DEPT 50 20659. 80 15
ORDER BY SALARY DESC) AS Rl 10 18357.50 20
FROM STAFF S1 40 18006. 00 38
WHERE ID < 80
AND YEARS |'S NOT NULL
) AS XXX
WHERE RL =1
ORDER BY DP;

Figure 155, Get highest salary in each department, use RANK function

Hereis the same query, written using a correlated sub-query:

SELECT I D ANSVEER
, SALARY —=—=—==—=—=—=—=====
, DEPT AS DP | D SALARY DP
FROM STAFF S1 O --
WHERE I D < 80 50 20659.80 15
AND YEARS |'S NOT NULL 10 18357.50 20
AND NOT EXI STS 40 18006.00 38
(SELECT *
FROM STAFF S2
WHERE S2.1D < 80
AND S2. YEARS IS NOT NULL
AND S2. DEPT = S1. DEPT
AND S2. SALARY > S1. SALARY)
ORDER BY DP;

Figure 156, Get highest salary in each department, use correlated sub-query

Here is the same query, written using an uncorrelated sub-query:

SELECT ID ANSVER
, DEPT AS DP ID SALARY DP
FROM STAFF ce e --
WHERE ID < 80 50 20659. 80 15
AND YEARS I'S NOT NULL 10 18357.50 20
AND (DEPT, SALARY) IN 40 18006. 00 38
(SELECT DEPT, MAX(SALARY)
FROM STAFF
WHERE ID < 80

AND YEARS |'S NOT NULL
GROUP BY DEPT)
ORDER BY DP;

Figure 157, Get highest salary in each department, use uncorrelated sub-query

Arguably, the first query above (i.e. the one using the RANK function) is the most elegant of
the series because it is the only statement where the basic predicates that define what rows
match are written once. With the two sub-query examples, these predicates have to bere-
peated, which can often lead to errors.

NOTE: If it seems at times that this chapter was written with a poison pen, it is because

just about now | had a "Microsoft moment" and my machine crashed. Needless to say, |

had backups and, needless to say, they got trashed. It took me four days to get back to
where | was. Thanks Bill - may you rot in hell. / Graeme

OLAP Functions 59

Graeme Birchall ©

Row Numbering Function

The ROW_NUMBER function lets one number the rows being returned. The result is of type
BIGINT. A syntax diagram follows. Observe that unlike with the ranking functions, the OR-
DER BY isnot required:

F ROW_NUMBER() — OVER(}

> , 0 >
L— PARTITION BY £partitioning expression
>) >

.) asc option
L ORDER BY gordermg expression []
L desc option

Figure 158, Numbering Function syntax
ORDER BY Usage

Y ou don't have to provide an ORDER BY when using the ROW_NUMBER function, but not
doing so can be considered to be either brave or foolish, depending on one's outlook on life.
Toillustrate thisissue, consider the following query:

SELECT I D ANSVEER
, NAME ——=—=—=—=——=—=—=—=—=—=—=—===
. RON NUMBER() OVER() AS R1 | D NAMVE RL R2
. RONNUVBER() OVER(ORDER BY ID) AS R2 == =c-mecmn —n -
FROM STAFF 10 Sanders 1 1
WHERE I D < 50 20 Pernal 2 2
AND YEARS |I'S NOT NULL 30 Marenghi 3 3
ORDER BY I D; 40 O Brien 4 4

Figure 159, ORDER BY example, 1 of 3

In the above example, both ROW_NUMBER functions return the same set of values, which
happen to correspond to the sequence in which the rows are returned. In the next query, the
second ROW_NUMBER function purposely uses another sequence:

SELECT I D ANSVEER
, NAME ——=—=—=—=——=—=—=—=—=—=—=—===
. RON NUMBER() OVER() AS Rl | D NAMVE RL R2
. RONNUVBER() OVER(ORDER BY NAME) AS R2 == =c---cen -- --
FROM STAFF 10 Sanders 4 4
WHERE I D < 50 20 Pernal 3 3
AND YEARS |'S NOT NULL 30 Marenghi 2 2
ORDER BY I D; 40 O Brien 1 1

Figure 160, ORDER BY example, 2 of 3

Observe that changing the second function has had an impact on the first. Now lets see what
happens when we add another ROW_NUMBER function:

SELECT I D ANSVEER
, NAME ————=—=——=—=—=—=—=—=—=======
. RON NUMBER() OVER() AS RL | D NAME Rl R2 R3
, ROWNUVBER() OVER(ORDER BY ID) AS R2 == --eecoon =o -n --
, ROW_ NUMBER() OVER(ORDER BY NAME) AS R3 10 Sanders 1 1 4
FROM STAFF 20 Pernal 2 2 3
WHERE I D < 50 30 Marenghi 3 3 1
AND YEARS |'S NOT NULL 40 O Brien 4 4 2
ORDER BY | D,

Figure 161, ORDER BY example, 3 of 3
Observe that now the first function has reverted back to the original sequence.

60 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The lesson to be learnt here is that the ROW_NUMBER function, when not given an explicit
ORDER BY, may create avalue in any odd sequence. Usually, the sequence will reflect the
order in which the rows are returned - but not aways.

PARTITION Usage

The PARTITION phrase lets one number the matching rows by subsets of the rows returned.
In the following example, the rows are both ranked and numbered within each JOB:

SELECT JOB
, YEARS
, I D
, NAVE
, ROW NUMBER() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS ROWM
, RANK() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS RN1#
, DENSE_RANK() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS RN2#
FROM STAFF
VWHERE I D < 150
AND YEARS |IN (6,7) ANSVEER
AND JOB b ettt ettt
ORDER BY JOB JOB YEARS I D NAME ROM RN1# RN2#
B = e
Myr 6 140 Fraye 1 1 1
Myr 7 10 Sanders 2 2 2
Myr 7 100 Plotz 3 2 2
Sal es 6 40 OBrien 1 1 1
Sal es 6 90 Koonitz 2 1 1
Sal es 7 70 Rot hman 3 3 2

Figure 162, Use of PARTITION phrase

One problem with the above query is that the final ORDER BY that sequences the rows does
not identify a unique field (e.g. ID). Consequently, the rows can be returned in any sequence
within agiven JOB and Y EAR. Because the ORDER BY in the ROW_NUMBER function
also failsto identify a unique row, this means that there is no guarantee that a particular row
will dways give the same row number.

For consistent results, ensure that both the ORDER BY phrase in the function call, and at the
end of the query, identify a unique row. And to always get the rows returned in the desired
row-number sequence, these phrases must be equal.

Selecting "n" Rows

To query the output of the ROW_NUMBER function, one has to make a nested temporary
table that contains the function expression. In the following example, this techniqueis used to
limit the query to the first three matching rows:

SELECT * ANSVEER
FROM (SELECT |1 D —============
, NAVE | D NAMVE R
, RONW NUMBER() OVER(ORDER BY ID) AS R -- -----=--- -
FROM STAFF 10 Sanders 1
VWHERE I D < 100 20 Pernal 2
AND YEARS 1S NOT NULL 30 Marenghi 3
) AS XXX
VWHERE R <=3
ORDER BY I D;

Figure 163, Select first 3 rows, using ROW_NUMBER function
In the next query, the FETCH FIRST "n" ROWS notation is used to achieve the same resuilt:

OLAP Functions 61

SELECT 1D
, NAMVE
, ROW NUVMBER() OVER(ORDER BY ID) AS R
FROM STAFF

WHERE I D < 100
AND YEARS |'S NOT NULL
CRDER BY I D

FETCH FI RST 3 ROWS ONLY;
Figure 164, Sdlect first 3 rows, using FETCH FIRST notation

Graeme Birchall ©

10 Sanders 1
20 Pernal 2
30 Marenghi 3

So far, the ROW_NUMBER and the FIRST FETCH notations seem to be about the same. But
the former technique is much more flexible. To illustrate, in the next query we retrieve the 3rd

through 6th matching rows:

SELECT *
FROM (SELECT ID

, NAMVE
, ROW NUMBER() OVER(ORDER BY ID) AS R

FROM STAFF
WHERE ID < 200
AND YEARS |'S NOT NULL
) AS XXX
WHERE R BETWEEN 3 AND 6
ORDER BY I D;

Figure 165, Slect 3rd through 6th rows
In the next query we get every 5th matching row - starting with the first:

SELECT *
FROM (SELECT ID
, NAMVE
, ROW NUMBER() OVER(ORDER BY ID) AS R
FROM STAFF
WHERE ID < 200
AND YEARS |'S NOT NULL
) AS XXX
WHERE (R- 1) =((R-1) / 5 *5
ORDER BY I D;

Figure 166, Select every 5th matching row

In the next query we get the last two matching rows:

SELECT *
FROM (SELECT 1D
, NAVE
. ROW NUMBER() OVER(ORDER BY | D DESC) AS R
FROM STAFF
VWHERE 1D < 200
AND YEARS |I'S NOT NULL ANSVEER
)AS XXX —===—=—==—=—=—=—=—===
VWHERE R <= 2 I D NAME R
ORDER BY ID, e e

Figure 167, Select last two rows

Selecting "n" or more Rows

30 Marenghi 3
40 O Brien 4
50 Hanes 5
70 Rothman 6

10 Sanders 1
70 Rothman 6
140 Fraye 11
190 Snei der 16

190 Sneider 1

Imagine that one wants to fetch the first "n" rowsin aquery. Thisis easy to do, and has been
illustrated above. But imagine that one also wants to keep on fetching if the following rows

have the same value as the "nth".

In the next example, we will get the first three matching rows in the STAFF table, ordered by
years of service. However, if the 4th row, or any of the following rows, has the same YEAR

as the 3rd row, then we also want to fetch them.

62 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The query logic goes as follows:

¢ Select every matching row in the STAFF table, and give them all both a row-number and
aranking value. Both values are assigned according to the order of the final output. Put
the result into atemporary table - TEMPL1.

¢ Query the TEMPL table, getting the ranking of whatever row we want to stop fetching at.
In this case, it is the 3rd row. Put the result into atemporary table - TEMP2.

e Findly, join to the two temporary tables. Fetch those rowsin TEMP1 that have aranking
that isless than or equal to the single row in TEMP2.

W TH
TEMP1(YEARS, |D, NAME, RNK, ROW AS
(SELECT YEARS
1D
, NAMVE
, RANK() OVER(ORDER BY YEARS)
, ROW NUVBER() OVER(ORDER BY YEARS, | D)
FROM STAFF
WHERE ID < 200
AND YEARS |'S NOT NULL

)T'Elvpz(RNK) AS

(SELECT RNK
FROM TEMP1
VWHERE ROW= 3 ANSVEER
) sy —————————
SELECT TEMP1. * YEARS | D NAME RNK ROW
FROM TEMP1 eeeee eee eemeeeee ee oo
, TEMP2 3 180 Abrahans 1 1
VWHERE TEMP1. RNK <= TEMP2. RNK 4 170 Kerm sch 2 2
ORDER BY YEARS 5 30 Marenghi 3 3
1D 5 110 Ngan 3 4

Figure 168, Sdlect first "n" rows, or more if needed

The type of query illustrated above can be extremely useful in certain business situations. To
illustrate, imagine that one wants to give areward to the three employees that have worked
for the company the longest. Stopping the query that lists the lucky winners after three rows
are fetched can get oneinto alot of troubleif it happens that there are more than three em-
ployees that have worked for the company for the same number of years.

Selecting "n" Rows - Efficiently

Sometimes, one only wants to fetch the first "n" rows, where "n" is small, but the number of
matching rowsis extremely large. In this section, we will discus how to obtain these "n" rows
efficiently, which means that we will try to fetch just them without having to process any of
the many other matching rows.

Below is a sample invoice table. Observe that we have defined the INV# field as the primary
key, which means that DB2 will build a unique index on this column:

CREATE TABLE | NvO CE

(1 Nv# | NTEGER NOT NULL
, CUSTOVER# | NTEGER NOT NULL
, SALE_DATE DATE NOT NULL

,SALE_VALUE DECIMAL(9,2) NOT NULL
, CONSTRAI NT CTX1 PRI MARY KEY (1 NV#)
, CONSTRAI NT CTX2 CHECK(| NV# >= 0));

Figure 169, Performance test table - definition

The next SQL statement will insert 100,000 rows into the above table. After the rows were
inserted, RUNSTATS was run, so the optimizer could choose the best access path.

OLAP Functions 63

Graeme Birchall ©

I NSERT | NTO | N\VOI CE
WTH TEMP (N, M AS
(VALUES (I NTEGER(0), RAND(1))

UNI ON ALL

SELECT N+1, RAND()

FROM TEMP

WHERE N+1 < 100000

)

SELECT N AS | NV#
, INT(M * 1000) AS CUSTOMER#
, DATE(’ 2000-11-01') + (M40) DAYS AS SALE DATE
,DECIMAL((M * M * 100), 8, 2) AS SALE_VALUE

FROM TEMP;

Figure 170, Performance test table - insert 100,000 rows

Imagine we want to retrieve the first five rows (only) from the above table. Below are several
gueries that will get this result. For each query, for the elapsed time, as measured by the DB2
Event Monitor is provided.

Below we use the "FETCH FIRST n ROWS' notation to stop the query at the 5th row. This
guery first did atablespace scan, then sorted all 100,000 matching rows, and then fetched the
first five. It was not cheap:

SELECT S.*
, ROWNUMBER() OVER() AS ROM
FROM I N\VO CE S

ORDER BY | NV#
FETCH FIRST 5 ROAS ONLY;

Figure 171, Fetch first 5 rows - 2.837 elapsed seconds

The next query is essentially the same as the prior, but this time we told DB2 to optimize the
guery for fetching five rows. Now one would think that the optimizer would aready know
this, but it evidently did not. This query used the INV# index to retrieve the rows without
sorting. It stopped processing at the 5th row. Observe that it was amost a thousand times
faster than the prior example:

SELECT S.*
, ROW NUMBER() OVER() AS ROM
FROM INVOI CE S

CRDER BY | Nv#
FETCH FI RST 5 ROAS ONLY
OPTIM ZE FOR 5 ROW5;

Figure 172, Fetch first 5 rows - 0.003 elapsed seconds

The next query uses the ROW_NUMBER function to sequence the rows. Subsequently, only
those rows with a row-number less than or equal to five are retrieved. DB2 answers this query
using a single non-matching index scan of the whole table. No temporary table is used, and
nor is a sort done, but the query is not exactly cheap

SELECT *

FROM (SELECT S.*

, ROW NUMBER() OVER() AS ROW
FROM INVO CE S
) XXX
VHERE ROM <= 5
ORDER BY | NV#;

Figure 173, Fetch first 5 rows - 0.691 elapsed seconds

At about this point, ailmost any halfway-competent idiot would conclude that the best way to
make the above query run faster is to add the same "OPTIMIZE FOR 5 ROWS" notation that
did wondersin the prior example. So we did (see below), but the access path remained the
same, and the query now ran significantly slower:

64 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT *
FROM (SELECT S.*
, ROW NUMBER() OVER() AS ROW
FROM INVO CE S
) XXX
WHERE ~ ROW <= 5
ORDER BY | Nv#
OPTIM ZE FOR 5 ROAB

Figure 174, Fetch first 5 rows - 2.363 elapsed seconds

One can aso use recursion to get the first "n" rows. One begins by getting the first matching
row, and then one uses that row to get the next, and then the next, and so on (in arecursive
join), until the required number of rows has been obtained.

In the following example, we start by getting the row with the MIN invoice-number. This row
is then joined to the row with the next to lowest invoice-number, which is then joined to the
next, and so on. After five such joins, the cycle is stopped and the result is selected:
WTH TEMP (INV#, C#, SD, SV, N) AS
(SELECT I NV.*
, 1
FROM | NVOI CE | NV
WHERE | NV# =
(SELECT M N(I Nv#)
FROM | NVO CE)
UNFON ALL
SELECT NEW*, N + 1
FROM TEMP oD
, I N\VO CE NEW
WHERE OLD. | NV# < NEW | Nv#
AND OD.N <5
AND NEW I NV# =
(SELECT M N(XXX. | NV#)
FROM | NVOI CE XXX
VHERE XXX. | NV# > OLD. | NV#)

)
SELECT *
FROM TEMP;

Figure 175, Fetch first 5 rows - 0.005 elapsed seconds

The above technique is nice to know, but it will have few practical uses, because it has sev-
eral mgjor disadvantages:

e Itisnot exactly easy to understand.

e Itrequiresall primary predicates (e.g. get only those rows where the sale-value is greater
than $10,000, and the sale-date greater than last month) to be repeated four times. In the
above example there are none, which is unusual in the real world.

e It quickly becomes both very complicated and quite inefficient when the sequencing
value is made up of multiple fields. In the above example, we sequenced by the INV#
column, but imagine if we had used the sale-date, sale-value, and customer-number.

¢ Itisextremely vulnerable to inefficient access paths. For example, if instead of joining
from one (indexed) invoice-number to the next, we joined from one (non-indexed) cus-
tomer-number to the next, the query would run forever.

In conclusion, in this section we have illustrated how minor changes to the SQL syntax can
cause magjor changesin query performance. But to illustrate this phenomenon, we used a set
of queries with 100,000 matching rows. In situations where there are far fewer matching
rows, one can reasonably assume that this problem is not an issue.

OLAP Functions 65

Graeme Birchall ©

Aggregation Function

The various aggregation functions let one do cute things like get cumulative totals or running
averages. In some ways, they can be considered to be extensions of the existing DB2 column
functions. The output type is dependent upon the input type.

—— column-function OVER()
) T 4

L PARTITION BY ipartitioning expression JJ

OVER(}

’ asc option
p— ORDER BY ; ordering expression | A —4

L desc option — }

FE ROWS UNBOUNDED PRECEDING) 4
RANGE j unsigned-constant PRECEDING __|

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING 74}
unsigned-constant PRECEDING —|
unsigned-constant FOLLOWING __|
CURRENT ROW

F AND UNBOUNDED FOLLOWING) 4

unsigned-constant PRECEDING —
unsigned-constant FOLLOWING __|
CURRENT ROW

Figure 176, Aggregation Function syntax

Syntax Notes

Guess what - thisis a complicated function. Be aware of the following:

66

Any DB2 column function (e.g. AVG, SUM, COUNT) can use the aggregation function.

The OVER() usage aggregates al of the matching rows. Thisis equivalent to getting the
current row, and also applying a column function (e.g. MAX, SUM) against all of the
matching rows (see page 67).

The PARTITION phrase limits any aggregation to a subset of the matching rows.

The ORDER BY phrase has two purposes; It defines a set of values to do aggregations
on. Each distinct value gets a new result. It also defines a direction for the aggregation
function processing - either ascending or descending (see page 68).

An ORDER BY phraseisrequired if the aggregation is confined to a set of rows or range
of values. In addition, if aRANGE is used, then the ORDER BY expression must be a
single value that allows subtraction.

If an ORDER BY phraseis provided, but neither a RANGE nor ROWS is specified, then
the aggregation is done from the first row to the current row.

OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

* The ROWS phrase limits the aggregation result to a set of rows - defined relative to the
current row being processed. The applicable rows can either be aready processed (i.e.
preceding) or not yet processed (i.e. following), or both (see page 69).

* The RANGE phrase limits the aggregation result to arange of values - defined relative to
the value of the current row being processed. The range is calculated by taking the value
in the current row (defined by the ORDER BY phrase) and adding to and/or subtracting
from it, then seeing what other rows are in the range. For this reason, when RANGE is
used, only one expression can be specified in the aggregation function ORDER BY, and
the expression must be numeric (see page 72).

* Preceding rows have aready been fetched. Thus, the phrase "ROWS 3 PRECEDING"
refersto the 3 preceding rows - plus the current row. The phrase "UNBOUNDED PRE-
CEDING" refersto al those rows (in the partition) that have already been fetched, plus
the current one.

¢ Following rows have yet to be fetched. The phrase "UNBOUNDED FOLLOWING" re-
fersto all those rows (in the partition) that have yet to be fetched, plus the current one.

e The phrase CURRENT ROW refers to the current row. It is equivalent to getting zero
preceding and following rows.

* If either aROWS or aRANGE phraseis used, but no BETWEEN is provided, then one
must provide a starting point for the aggregation (e.g. ROWS 1 PRECEDING). The start-
ing point must either precede or equal the current row - it cannot follow it. The implied
end point isthe current row.

¢ When using the BETWEEN phrase, put the "low" value in the first check and the "high"
value in the second check. Thus one can go from the 1 PRECEDING to the CURRENT
ROW, or from the CURRENT ROW to 1 FOLLOWING, but not the other way round.

e Theset of rowsthat match the BETWEEN phrase differ depending upon whether the
aggregation function ORDER BY is ascending or descending.

Basic Usage

In its simplest form, with just an "OVER()" phrase, an aggregation function works on al of
the matching rows, running the column function specified. Thus, one gets both the detailed
data, plusthe SUM, or AV G, or whatever, of all the matching rows.

In the following example, five rows are selected from the STAFF table. Along with various
detailed fields, the query also gets sum summary data about the matching rows:

SELECT 1D
, NAMVE
, SALARY
, SUM SALARY) OVER() AS SUM SAL
, AVG(SALARY) OVER() AS AVG SAL
, M N(SALARY) OVER() AS M N_SAL
, MAX(SALARY) OVER() AS MAX_SAL
, COUNT(*) OVER() AS #ROAS

FROM STAFF
WHERE I D < 60
ORDER BY | D,

Figure 177, Aggregation function, basic usage, SQL

Below isthe answer

OLAP Functions 67

Graeme Birchall ©

I D NAME SALARY SUM SAL AVG SAL M N_SAL MAX_SAL #ROWS
10 Sanders 18357.50 92701.30 18540.26 17506.75 20659.80 5
20 Pernal 18171.25 92701.30 18540.26 17506.75 20659.80 5
30 Marenghi 17506.75 92701.30 18540.26 17506.75 20659.80 5
40 O Brien 18006. 00 92701.30 18540.26 17506.75 20659.80 5
50 Hanes 20659. 80 92701.30 18540.26 17506.75 20659.80 5

Figure 178, Aggregation function, basic usage, Answer

It is possible to do exactly the same thing using old-fashioned SQL, but it is not so pretty:

W TH
TEMPL (1D, NAME, SALARY) AS
(SELECT I D, NAME, SALARY
FROM STAFF
VWHERE ID < 60

).
TEMP2 (SUM SAL, AVG SAL, M N SAL, MAX SAL, #ROAB) AS
(SELECT ~ SUM SALARY)

, AVG(SALARY)
, M N(SALARY)
, MAX(SALARY)
, COUNT(*)
FROM TEMP1

)

SELECT *

FROM TEMP1

, TEMP2
ORDER BY | D;

Figure 179, Sdlect detailed data, plus summary data

An aggregation function with just an "OVER()" phrase islogically equivalent to one that has
an ORDER BY on afield that has the same value for al matching rows. To illustrate, in the
following query, the four aggregation functions are al logically equivalent:

SELECT 1D
, NAMVE
, SALARY
, SUM SALARY) OVER() AS SUML
, SUM SALARY) OVER(ORDER BY I D * 0) AS SUMR
, SUM SALARY) OVER(ORDER BY ' ABC) AS SUVB

, SUM SALARY) OVER(ORDER BY ' ABC
RANGE BETWEEN UNBOUNDED PRECEDI NG
AND UNBOUNDED FOLLON NG) AS SUM4

FROM STAFF
WHERE ID < 60
ORDER BY I D;
Figure 180, Logically equivalent aggregation functions, SQL
ID NAME SALARY SUML Suwe SUMVB Suwa

10 Sanders 18357.50 92701.30 92701.30 92701.30 92701.30
20 Pernal 18171.25 92701.30 92701.30 92701.30 92701.30
30 Marenghi 17506.75 92701.30 92701.30 92701.30 92701.30
40 O Brien 18006. 00 92701.30 92701.30 92701.30 92701.30
50 Hanes 20659. 80 92701.30 92701.30 92701.30 92701.30

Figure 181, Logically equivalent aggregation functions, Answer

ORDER BY Usage

The ORDER BY phrase has two main purposes:

e It provides aset of valuesto do aggregations on. Each distinct value gets a new result.

* It givesadirection to the aggregation function processing (i.e. ASC or DESC).

68 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

In the next query, various aggregations are done on the DEPT field, which is not unique, and
on the DEPT and NAME fields combined, which are unique (for these rows). Both ascending
and descending aggregations are illustrated:

SELECT DEPT
, NAME
, SALARY
, SUM SALARY)
, SUM SALARY)
, SUM SALARY)
, SUM SALARY)
, COUNT(*)
» COUNT(*)
FROM STAFF
VHERE ID < 60
ORDER BY DEPT
» NAME;

OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY

Figure 182, Aggregation function, order by usage, SQL

DEPT) AS SUML
DEPT’ DESC) AS SUMR
DEPT, NAVE) AS SUNB
DEPT DESC, NAME DESC) AS SUMA
DEPT) AS ROAL
DEPT, NAVE) AS RO

The answer is below. Observe that the ascending fields sum or count up, while the descending
fields sum down. Also observe that each aggregation field gets a separate result for each new

set of rows, as defined in th
DEPT NAME SALARY

15
20
20
38
38

18171.

Mar enghi
O Brien

17506.

20659. 80
18357. 50
18006. 00

e ORDER BY phrase:

20659.
57188.
57188.
92701.
92701.

92701. 30
72041. 50
72041. 50
35512. 75
35512. 75

25
75

20659. 80
38831. 05
57188. 55
74695. 30
92701. 30

92701. 30
72041. 50
53870. 25
35512. 75
18006. 00

Figure 183, Aggregation function, order by usage, Answer

ROWS Usage

The ROWS phrase can be used to limit the aggregation function to a subset of the matching

rows or distinct values. If no ROWS or RANGE phrase is provided, the aggregation is done
for al preceding rows, up to the current row. Likewise, if no BETWEEN phrase is provided,
the aggregation is done from the start-location given, up to the current row. In the following
guery, al of the examples using the ROWS phrase are of this type:

SELECT DEPT
, NAMVE
. YEARS
, SMALLI NT(SU
, SVALLI NT(SU
, SVALLI NT(SU

, SMALLI NT(SU
, SMALLI NT(SU
, SMALLI NT(SU
, SMALLI NT(SU
, SMALLI NT(SU
FROM
WHERE
AND

ORDER BY DEPT
» NAME;

STAFF
I D

M YEARS)
M YEARS)
M YEARS)

OVER(ORDER
OVER(ORDER
OVER(ORDER

RONS
M YEARS) OVER(ORDER

RONS
M YEARS) OVER(ORDER
RONS
M YEARS) OVER(ORDER
RONS
M YEARS) OVER(ORDER

RONS
OVER(ORDER
RO

M YEARS)

< 100

YEARS | S NOT' NULL

BY
BY
BY
BY
BY
BY
BY

BY

DEPT)) AS
DEPT, ~ NAVE)) AS
DEPT, NAVE

UNBOUNDED PRECEDI NG)) AS
DEPT, NAME

3 PRECEDI NG)) AS
DEPT, NAVE

1 PRECEDI NG)) AS
DEPT, NAVE

0 PRECEDI NG)) AS
DEPT, NAVE

CURRENT ROW) AS
DEPT DESC, NAVE DESC

1 PRECEDI NG)) AS

Figure 184, Sarting ROWSusage. Implied end is current row, SQL

OLAP Functions

69

Graeme Birchall ©

Below is the answer. Observe that an aggregation starting at the current row, or including
zero proceeding rows, doesn't aggregate anything other than the current row:

DEPT NAME YEARS D DN DNU DN3 DN1 DNO DNC DNX
15 Hanes 10 17 10 10 10 10 10 10 17
15 Rot hman 7 17 17 17 17 17 7 7 15
20 Per nal 8 32 25 25 25 15 8 8 15
20 Sander s 7 32 32 32 32 15 7 7 12
38 Mar enghi 5 43 37 37 27 12 5 5 11
38 O Brien 6 43 43 43 26 11 6 6 12
42 Kooni t z 6 49 49 49 24 12 6 6 6

Figure 185, Sarting ROWSusage. Implied end is current row, Answer
BETWEEN Usage

In the next query, the BETWEEN phraseis used to explicitly define the start and end rows
that are used in the aggregation:

SELECT DEPT
, NAVE
, YEARS
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME)) AS UC1
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROAB UNBOUNDED PRECEDI NG)) AS UC2
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROAS BETWEEN UNBOUNDED PRECEDI NG
AND CURRENT ROW) AS UC3
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN CURRENT ROW
AND CURRENT ROW) AS cul
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROAS BETWEEN 1 PRECEDI NG
AND 1 FOLLOWN NG)) AS PF1
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN 2 PRECEDI NG
AND 2 FOLLON NG)) AS PF2
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROAS BETWEEN 3 PRECEDI NG
AND 3 FOLLOW NG)) AS PF3
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG)) AS CUL
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROAS BETWEEN UNBOUNDED PRECEDI NG
AND UNBOUNDED FOLLOW NG)) AS UUL
FROM STAFF
WHERE I D < 100
AND YEARS |'S NOT NULL
ORDER BY DEPT
, NAVE;
Figure 186, ROWS usage, with BETWEEN phrase, SQL

Now for the answer. Observe that the first three aggregation calls are logically equivalent:

DEPT NAME YEARS UC1 UC2 UC3 QU1 PF1 PF2 PF3 CU1 UUL
15 Hanes 10 10 10 10 10 17 25 32 49 49
15 Rot hman 7 17 17 17 7 25 32 37 39 49
20 Pernal 8 25 25 25 8 22 37 43 32 49
20 Sanders 7 32 32 32 7 20 33 49 24 49
38 Marenghi 5 37 37 37 5 18 32 39 17 49
38 OBrien 6 43 43 43 6 17 24 32 12 49
42 Koonitz 6 49 49 49 6 12 17 24 6 49

Figure 187, ROWS usage, with BETWEEN phrase, Answer

70 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The BETWEEN predicate in an ordinary SQL statement is used to get those rows that have a
value between the specified low-value (given first) and the high value (given last). Thusthe
predicate "BETWEEN 5 AND 10" may find rows, but the predicate "BETWEEN 10 AND 5"
will never find any.

The BETWEEN phrase in an aggregation function has asimilar usage in that it defines the set
of rows to be aggregated. But it differsin that the answer depends upon the function ORDER
BY sequence, and a non-match returns a null value, not no-rows.

Below is some sample SQL. Observe that the first two aggregations are ascending, while the
last two are descending:

SELECT 1D
, NAMVE
, SVALLI NT(SUM | D) OVER(ORDER BY | D ASC
ROWS BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS APC
, SMALLI NT(SUM | D) OVER(ORDER BY | D ASC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOW NG)) AS ACF
, SVALLI NT(SUM | D) OVER(ORDER BY | D DESC
ROWS BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS DPC
, SMALLI NT(SUM | D) OVER(ORDER BY | D DESC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOW NG)) AS DCF

FROM STAFF
WHERE I D < 50
AND YEARS | S NOT' NULL ANSVEER

| D NAMVE APC ACF DPC DCF

10 Sanders 10 30 30 10
20 Pernal 30 50 50 30
30 Marenghi 50 70 70 50
40 O Brien 70 40 40 70

Figure 188,BETWEEN and ORDER BY usage

The following tableillustrates the processing sequence in the above query. Each BETWEEN
is applied from left to right, while the rows are read either from left to right (ORDER BY ID
ASC) or right to left (ORDER BY ID DESC):

ASC 1 D (10, 20, 30, 40)
READ ROA5, LEFT to RIGHT 1ST- ROW 2ND- ROW 3RD- ROW 4TH ROW

1 PRECEDI NG t o CURRENT ROW 10=10 10+20=30 20+30=40 30+40=70
CURRENT ROWto 1 FOLLON NG 10+20=30 20+30=50 30+40=70 40 =40

DESC | D (40, 30, 20, 10)
READ ROAB, RI GHT to LEFT 1ST-RON 2ND-RON 3RD-ROW 4TH ROW

1 PRECEDI NG to CURRENT ROW 20+10=30 30+20=50 40+30=70 40 =40
CURRENT ROWto 1 FOLLOWNG 10 =10 20+10=30 30+20=50 40+30=70

NOTE: Preceding row is always on LEFT of current row.
Following row is always on RI GHT of current row.

Figure 189, Explanation of query

IMPORTANT: The BETWEEN predicate, when used in an ordinary SQL statement, is not
affected by the sequence of the input rows. But the BETWEEN phrase, when used in an
aggregation function, is affected by the input sequence.

OLAP Functions 71

RANGE Usage

Graeme Birchall ©

The RANGE phrase limits the aggregation result to arange of numeric values - defined rela-
tive to the value of the current row being processed. The range is obtained by taking the value
in the current row (defined by the ORDER BY expression) and adding to and/or subtracting
from it, then seeing what other rows are in the range. Note that only one expression can be
specified in the ORDER BY/, and that expression must be numeric.

In the following example, the RANGE function adds to and/or subtracts from the DEPT field.
For example, in the function that is used to populate the RG10 field, the current DEPT value

is checked against the preceding DEPT values. If their value iswithin 10 digits of the current
value, therelated YEARS field is added to the SUM:

SELECT

FROM
WHERE
AND

DEPT
, NAMVE
, YEARS

, SVALLI NT(SUM YEARS)

, SMALLI NT(SUM YEARS)

, SVMALLI NT(SUM YEARS)

, SMALLI NT(SUM YEARS)

, SVMALLI NT(SUM YEARS)

, SMALLI NT(SUM YEARS)

, SVMALLI NT(SUM YEARS)

STAFF
I D

» NAVE;

< 100
YEARS |I'S NOT NULL
ORDER BY DEPT

Figure 190, RANGE usage, SQL

Now for the answer:

42

Per nal

Sanders
Mar engh
O Brien
Kooni t z

Figure 191, RANGE usage, Answer
Note the difference between the ROWS as RANGE expressions:

OVER(ORDER BY
ROWS BETWEEN
AND
OVER(ORDER BY
ROAS BETWEEN
AND
OVER(ORDER BY
RANGE BETWEEN
AND
OVER(ORDER BY
RANGE BETWEEN
AND
OVER(ORDER BY
RANGE BETWEEN
AND
OVER(ORDER BY
RANGE BETWEEN
AND
OVER(ORDER BY
RANGE BETWEEN
AND

ROV2 RA01
10 17
17 17
25 15
22 15
20 11
18 11
17 6

DEPT
1 PRECEDI NG
CURRENT ROW)
DEPT

2 PRECEDI NG
CURRENT ROW)
DEPT

1 PRECEDI NG
CURRENT ROW)
DEPT

10 PRECEDI NG
CURRENT ROW)
DEPT

20 PRECEDI NG
CURRENT ROW)
DEPT

10 PRECEDI NG
20 FOLLON NG))
DEPT

CURRENT ROW
20 FOLLOW NG))

RG10 RG20
17 17
17 17
32 32
32 32
11 26
11 26
17 17

AS

AS

AS RQA01

AS RG10

AS RG20

AS RGl1

AS RX9

RG11
32
32
43 26
43 26
17 17
17 17
17 6

R®9

32
32

¢ The ROWS expression refers to the "n" rows before and/or after (within the partition), as

defined by the ORDER BY .

¢ The RANGE expression refers to those before and/or after rows (within the partition) that
are within an arithmetic range of the current row.

72

OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

PARTITION Usage

One can take dl of the lovely stuff described above, and make it whole lot more complicated
by using the PARTITION expression. This phrase limits the current processing of the aggre-
gation to a subset of the matching rows.

In the following query, some of the aggregation functions are broken up by partition range
and some are not. When there is a partition, then the ROWS check only works within the
range of the partition (i.e. for agiven DEPT):

SELECT DEPT

, NAMVE
. YEARS
. SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT)) AS X
, SVALLI NT(SUM YEARS) OVER(ORDER BY DEPT
ROWS 3 PRECEDI NG)) AS XC8B
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
ROWS BETWEEN 1 PRECEDI NG
AND 1 FOLLON NG)) AS XOl1
, SVMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT)) AS P
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT)) AS PO
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROWS 1 PRECEDI NG)) AS POL
, SVALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROWS 3 PRECEDI NG)) AS PCB
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROWS BETWEEN 1 PRECEDI NG
AND 1 FOLLOWNG)) AS POL1
FROM STAFF
WHERE | D BETVEEN 40 AND 120

AND YEARS |'S NOT NULL
CRDER BY DEPT

» NAME;
Figure 192, PARTITION usage, SQL
DEPT NANVE YEARS X X3 XOi1 P PO POL PG3 POL1
15 Hanes 10 22 10 15 22 22 10 10 15
15 Ngan 5 22 15 22 22 22 15 15 22
15 Rot hman 7 22 22 18 22 22 12 22 12
38 OBrien 6 28 28 19 6 6 6 6 6
42 Koonitz 6 41 24 19 13 13 6 6 13
42 Plotz 7 41 26 13 13 13 13 13 13

Figure 193, PARTITION usage, Answer
PARTITION vs. GROUP BY

The PARTITION clause, when used by itself, returns avery similar result to a GROUP BY,
except that it does not remove the duplicate rows. To illustrate, below is asimple query that
doesaGROUPBY :

SELECT DEPT ANSVER
, SUN[YEARS) AS SUM ———————=—=—=—=—=—====
, AV YEARS) AS AVG DEPT SUM AVG ROW
L COUNT(*) ~ AS ROW
FROM STAFF 15 22 7 3
VWHERE | D BETVWEEN 40 AND 120 38 6 6 1
AND YEARS |I'S NOT NULL 42 13 6 2

GROUP BY DEPT;
Figure 194, Sample query using GROUP BY

OLAP Functions 73

Graeme Birchall ©

Below isasimilar query that uses the PARTITION phrase. Observe that the answer isthe
same, except that duplicate rows have not been removed:

SELECT DEPT ANSVER
, SUM YEARS) OVER(PARTI TI ON BY DEPT) AS SUM =================
, AV YEARS) OVER(PARTI TI ON BY DEPT) AS AVG DEPT SUM AVG ROW
, COUNT(*) OVER(PARTI TI ON BY DEPT) AS ROW ----- --- --- ---

FROM STAFF 15 22 7 3
WHERE | D BETWEEN 40 AND 120 15 22 7 3
AND YEARS | S NOT' NULL 15 22 7 3
ORDER BY DEPT,; 38 6 6 1
42 13 6 2

42 13 6 2

Figure 195, Sample query using PARTITION

Below is another similar query that usesthe PARTITION phrase, and then uses aDISTINCT
clause to remove the duplicate rows:

SELECT DI STI NCT DEPT ANSVER
, SUM YEARS) OVER(PARTI TI ON BY DEPT) AS SUM =================
, AVG{ YEARS) OVER(PARTI TI ON BY DEPT) AS AVG DEPT SUM AVG ROW
L COUNT(*) = OVER(PARTI TI ON BY DEPT) AS RON ----- --= --- ---

FROM STAFF 15 22 7 3
WHERE | D BETWEEN 40 AND 120 38 6 6 1
AND YEARS | S NOT' NULL 42 13 6 2

ORDER BY DEPT;
Figure 196, Sample query using PARTITION and DISTINCT

Even though the above statement gives the same answer as the prior GROUP BY example, it
is not the same internally. Nor isit (probably) as efficient, and it certainly is not as easy to
understand. Therefore, when in doubt, use the GROUP BY syntax.

74 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Scalar Functions

Introduction

Scalar functions act on asingle row at atime. In this section we shall list all of the ones that
come with DB2 and look in detail at some of the more interesting ones. Refer to the SQL
Reference for information on those functions not fully described here.

WARNING: Some of the scalar functions changed their internal logic between V5 and V6
of DB2. There have been no changes between V6 and V7, or between V7 and V8, except
for the addition of a few more functions.

Sample Data

The following self-defined view will be used throughout this section to illustrate how some of
the following functions work. Observe that the view has aVALUES expression that defines
the contents- three rows and nine columns.

CREATE VI EW SCALAR (D1, F1, S1, C1, V1, TS1, DT1, TML, TC1) AS
WTH TEMPL (N1, Cl, T1) AS
(VALUES (-2.4,’ ABCDEF ,’ 1996-04-22-23.58. 58. 123456’)
,(+0.0,” ABCD ’,’1996-08-15-15.15.15. 151515’)
,(+1.8," AB ', 7 0001-01- 01- 00. 00. 00. 000000’))
SELECT DECI MAL(N1, 3, 1)
, DOUBLE(N1)
, SVALLI NT(N1)
, CHAR(C1, 6)
, VARCHAR(RTRI M C1) , 6)
, TI MESTAMP(T1)
, DATE(T1)
, TI ME(T1)
, CHAR(T1)
FROM TEMPL;
Figure 197, Sample View DDL - Scalar functions

Below are the view contents:

D1 F1 S1 Cl V1 TS1
-2.4 - 2. 4e+000 -2 ABCDEF ABCDEF 1996- 04- 22- 23. 58. 58. 123456
0.0 0. 0e+000 0 ABCD ABCD 1996- 08- 15- 15. 15. 15. 151515
1.8 1. 8e+000 1 AB AB 0001-01- 01-00. 00. 00. 000000
DT1 T™L TCl1

04/ 22/ 1996 23:58: 58 1996- 04- 22-23. 58. 58. 123456
08/ 15/ 1996 15:15:15 1996- 08- 15- 15. 15. 15. 151515
01/01/ 0001 00: 00: 00 0001-01-01-00. 00. 00. 000000

Figure 198, SCALAR view, contents (3 rows)

|
Scalar Functions, Definitions

ABS or ABSVAL

Returns the absolute value of anumber (e.g. -0.4 returns + 0.4). The output field type will
equal the input field type (i.e. double input returns double output).

Scalar Functions 75

Graeme Birchall ©

SELECT D1 AS D1 ANSWER (fl oat output shortened)
F1 AS F1 D1 D2 F1 F2

. ABS(F1) AS F2

FROM SCALAR; -2.400e+0 2.400e+00

2.4 2.4

0.0 0.0 0. 000e+0 0. 000e+00
1.8 1.8 1.800e+0 1.800e+00
Figure 199, ABSfunction examples

ACOS

Returns the arccosine of the argument as an angle expressed in radians. The output format is
double.

ASCII

Returns the ASCII code vaue of the leftmost input character. Vaid input types are any valid
character type up to 1 MEG. The output type is integer.

SELECT C1 ANSVEER
, ASCI | (Cl) AS AC1 ———————=——=—=—=====
,ASClI | (SUBSTR(C1, 2)) AS AC2 Cl ACl1 AC2
FROM SCALAR i e a--
VHERE Cl1 = ' ABCDEF ; ABCDEF 65 66

Figure 200, ASCII function examples

The CHR function is the inverse of the ASCII function.

ASIN

Returns the arcsine of the argument as an angle expressed in radians. The output format is
double.

ATAN

Returns the arctangent of the argument as an angle expressed in radians. The output format is
double.

ATANH

Returns the hyperbolic acrctangent of the argument, where the argument is and an angle ex-
pressed in radians. The output format is double.

ATAN2

Returns the arctangent of x and y coordinates, specified by the first and second arguments, as
an angle, expressed in radians. The output format is double.

BIGINT

Converts the input value to bigint (big integer) format. The input can be either numeric or
character. If character, it must be avalid representation of a number.

76 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

WTH TEMP (BIG AS
(VALUES BI G NT(1)
UNI ON ALL
SELECT BIG * 256

FROM

TEWP

WHERE BI G < 1E16

)
SELECT BI G

FROM

TEMP

Figure 201, BIGINT function example

167

42949
10995116
2814749767
720575940379

65536
77216
67296
27776
10656
27936

Converting certain float values to both bigint and decimal will result in different values being

returned (see below). Both results are arguably correct, it is simply that the two functions use

different rounding methods:
WTH TEMP (F1) AS
(VALUES FLOAT(1.23456789)

UNI ON ALL
SELECT F1 * 100

FROM

TEWP

WHERE F1 < 1E18

)
SELECT F1

FROM

AS FLOAT1

, DEC(F1, 19) AS DECI MAL1
,BIG NT(F1) AS BI G NT1

TEMP

Figure 202, Convert FLOAT to DECIMAL and BIGINT, SQL

. 23456789000000E+000
. 23456789000000E+002
. 23456789000000E+004
. 23456789000000E+006
. 23456789000000E+008
. 23456789000000E+010
. 23456789000000E+012
. 23456789000000E+014
. 23456789000000E+016
. 23456789000000E+018

DECI MAL1

123
12345

1234567.
123456789
12345678900
1234567890000
123456789000000
12345678900000000
1234567890000000000

12345

1234567

123456788
12345678899
1234567889999
123456788999999
12345678899999996
1234567889999999488

Figure 203, Convert FLOAT to DECIMAL and BIGINT, answer

See page 266 for a discussion on floating-point number manipulation.

BLOB
Convertsthe input (1st argument) to a blob. The output length (2nd argument) is optional.

F BLOB (— string-expression

L

, length

]

Figure 204, BLOB function syntax

CEIL or CEILING

Returns the next smallest integer value that is greater than or equal to the input (e.g. 5.045
returns 6.000). The output field type will equal the input field type.

)

4

F CEIL or CEILING (—— numeric-expression —)
Figure 205, CEILING function syntax

Scalar Functions

4

77

SELECT D1

, CEI L(D1) AS D2
L F1
, CEIL(F1) AS F2

FROM SCALAR;

Figure 206, CEIL function examples

Graeme Birchall ©

ANSWER (fl oat output shortened)

2.4 - 2. - 2. 400E+0 -2. 000E+O
0.0 0. +0. 000E+0 +0. 000E+O
1.8 2. +1. 800E+0 +2. 000E+O

NOTE: Usually, when DB2 converts a number from one format to another, any extra digits
on the right are truncated, not rounded. For example, the output of INTEGER(123.9) is
123. Use the CEIL or ROUND functions to avoid truncation.

CHAR

The CHAR function has amultiplicity of uses. The result is always a fixed-length character
value, but what happens to the input along the way depends upon the input type:

¢ For character input, the CHAR function acts a hit like the SUBSTR function, except that
it can only truncate starting from the left-most character. The optional length parameter,
if provided, must be a constant or keyword.

« Datetimeinput is converted into an equivalent character string. Optionally, the external
format can be explicitly specified (i.e. 1ISO, USA, EUR, JIS, or LOCAL).

¢ Integer and double input is converted into aleft-justified character string.

« Decimal input is converted into aright-justified character string with leading zeros. The
format of the decimal point can optionally be provided. The default decimal pointisa
dot. The'+' and -’ symbols are not alowed as they are used as sign indicators.

D CHAR(

Figure 207, CHAR function syntax

character value

date-time value

L, length J : }

L , format J

integer value

double value

decimal value

L , dec.pt J

Below are some examples of the CHAR function in action:

SELECT NAME

, CHAR(NAME, 3)
, COWM
, CHAR(COVM)
, CHAR(COW " @)
FROM STAFF
VWHERE | D BETWEEN 80
AND 100
ORDER BY | D;

Janes Jam 128.20 00128.20 00128@0
Koonitz Koo 1386.70 01386.70 01386@0
Pl ot z Pl o - - -

Figure 208, CHAR function examples - characters and numbers

The CHAR function treats decimal numbers quite differently from integer and real numbers.
In particular, it right-justifies the former (with leading zeros), while it left-justifies the latter
(with trailing blanks). The next exampleillustrates this point:

78

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

ANSVER

INT CHAR INT CHAR FLT ~ CHAR DEC
WTH TEMPL (N) AS 33 3. 0EO 00000000003.
(VALUES (3) 99 9. OEO 00000000009.
UNI ON ALL 81 81 8. 1E1 00000000081.
SELECT N * N 6561 6561 6. 561E3 00000006561.
FROM TEMP1 43046721 43046721 4.3046721E7 00043046721.
VWHERE N < 9000
)
SELECT N AS | NT

, CHAR(I NT(N)) AS CHAR_I NT
, CHAR(FLOAT(N)) AS CHAR FLT
, CHAR(DEC(N)) AS CHAR DEC
FROM TEMPL;
Figure 209, CHAR function examples - positive numbers

Negative numeric input is given aleading minus sign. This messes up the alignment of digits
in the column (relative to any positive values). In the following query, aleading blank is put
in front of all positive numbersin order to realign everything:

WTH TEMP1 (N1, N2) AS ANSVEER
(VALUES (SMALLI NT(+3) ——————=———=——=—=—=——=—=-———————=—=—=—=—=—=—=—=—====
. SMALLI NT(- 7)) NL 11 12 DL D2
UNION ALL mmemee e ee emeee iemeoi aoa e
SELECT N1 * N2 33 +3 00003. +00003.
, N2 -21 -21 -21 -00021. -00021.
FROM TEMP1 147 147 +147 00147. +00147.
WHERE N1 < 300 -1029 -1029 -1029 -01029. -01029.

) 7203 7203 +7203 07203. +07203.
SELECT N1
,CHAR(N1) AS 11
, CASE
VHEN NI < 0 THEN CHAR (N1)
ELSE '+ OCONCAT CHAR(NL)
END AS |2
, CHAR(DEC(NL)) AS D1
CASE

WHEN N1 < 0 THEN CHAR(DEC(N1))
ELSE '+ CONCAT CHAR(DEC(NL))
END AS D2
FROM TEMPL;

Figure 210, Align CHAR function output - numbers

Both the 12 and D2 fields above will have atrailing blank on all negative values - that was
added during the concatenation operation. The RTRIM function can be used to removeit.

SELECT CHAR(HI REDATE, | SO ANSVER
, CHAR(HI REDATE, USA) oo =—=====
, CHAR(HI REDATE, EUR) 1 2 3
FROM EMPLOYEE ~ emeemmeoe eeeeien oo
WHERE LASTNAME < ' C 1972-02-12 02/12/1972 12.02.1972
CRDER BY 2; 1966- 03-03 03/03/1966 03.03. 1966

Figure 211, CHAR function examples - dates

WARNING: Observe that the above data is in day, month, and year (2nd column) order.
Had the ORDER BY been on the 1st column (with the ISO output format), the row se-
quencing would have been different.

CHAR vs. DIGITS - A Comparison

Numeric input can be converted to character using either the DIGITS or the CHAR function,
though the former does not support float. Both functions work differently, and neither gives

Scalar Functions 79

Graeme Birchall ©

perfect output. The CHAR function doesn't properly align up positive and negative numbers,
while the DIGITS function looses both the decimal point and sign indicator:

SELECT D2 ANSVER
, CHAR(D2) AS CD2 ———=——=——=——=—=—=—=—===
, DA TS(D2) AS DD2 D2 CD2 DD2
FROM (SELECT DEC(DL, 4,1) AS D2 e oo 2020
FROM SCALAR -2.4 -002.4 0024
) AS XXX 0.0 000.0 0000
ORDER BY 1; 1.8 001.8 0018

Figure 212, DIGITSvs. CHAR

CHR

Convertsinteger input in the range 0 through 255 to the equivalent ASCII character value. An
input value above 255 returns 255. The ASCII function (see above) is the inverse of the CHR
function.

SELECT ' A AS "C' ANSVER
,ASCIHT (T A) AS "CN' —===—=—============
,CHR(ASCI I (" A")) AS "CN>C C CN CNC N
, CHR(333) AS " NL" - eee aea- --
FROM STAFF A 65 A y

VWHERE D = 10;
Figure 213, CHR function examples

NOTE: At present, the CHR function has a bug that results in it not returning a null value
when the input value is greater than 255.

CLOB

Convertsthe input (1st argument) to a clob. The output length (2nd argument) is optional. If
the input is truncated during conversion, awarning message is issued. For example, in the
following example the second clob statement will induce awarning for the first two lines of
input because they have non-blank data after the third byte:

SELECT C1 ANSVEER
,CLOB(C1, 3) AS CC2 c1 CC1 cc2

FROM SCALAR, eeeeee eeeee .-

Figure 214, CLOB function examples

NOTE: At present, the DB2BATCH command processor dies a nasty death whenever it
encounters a clob field in the output.

COALESCE

Returns the first non-null valuein alist of input expressions (reading from left to right). Each
expression is separated from the prior by acomma. All input expressions must be compatible.
VALUE isasynonym for COALESCE.

SELECT I D ANSVEER
, COW —o=——————————=—=—=—===
, COALESCE(COWM 0) ID COwW 3
FROM STAFF co e s
VHERE ID < 30 10 - 0. 00
ORDER BY I D 20 612.45 612.45

Figure 215, COALESCE function example

80 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

A CASE expression can be written to do exactly the same thing as the COALESCE function.
The following SQL statement shows two logically equivalent waysto replace nulls:

W TH TEMPL(C1, C2, C3) AS ANSVEER

(VALUES (CAST(NULL AS SMALLI NT) ——————o-

, CAST(NULL AS SMALLI NT) ccl o2

,CAST(10 AS SNMALLINT)))

SELECT COALESCE(C1, C2, C3) AS CCl 10 10
, CASE

VWHEN C1 IS NOT NULL THEN C1
WHEN C2 IS NOT NULL THEN C2
VWHEN C3 IS NOT NULL THEN C3
END AS CC2
FROM TEMP1;

Figure 216, COALESCE and equivalent CASE expression

Be aware that afield can return anull value, even when it is defined as not null. This occursiif
acolumn function is applied against the field, and no row is returned:

SELECT COUNT(*) AS #RONS ANSVER
, M N(| D) AS M N_| D ——=—=—=—=—=—=—=—=—==—=—=—==—===
, COALESCE(M N(ID),-1) AS CCC_ID #RONS M N_ID CCC_ID
FROM STAFE 7T e LD LT T
WHERE ID < 5; 0 - -1

Figure 217, NOT NULL field returning null value

CONCAT

Joins two strings together. The CONCAT function has both "infix" and "prefix" notations. In
the former case, the verb is placed between the two strings to be acted upon. In the latter case,
the two strings come after the verb. Both syntax flavours are illustrated below:
SELECT A || B ANSVER
, A CONCAT 'PB —————————————=—=—====
, CONCAT(" A, B') 1 2 3 4 5
A |]'B | T C
, CONCAT(CONCAT(" A ,'B'),’' C) AB AB AB ABC ABC
FROM STAFF
VWHERE ID = 10;

Figure 218, CONCAT function examples

Note that the "||" keyword can not be used with the prefix notation. This means that "||(’a,b")"
isnot valid while "CONCAT('a,'b)" is.

Using CONCAT with ORDER BY

When ordinary character fields are concatenated, any blanks at the end of thefirst field are
left in place. By contrast, concatenating varchar fields removes any (implied) trailing blanks.

If the result of the second type of concatenation isthen used in an ORDER BY, the resulting
row sequence will probably be not what the user intended. To illustrate:

WTH TEMP1 (COL1, COL2) AS ANSVEER
(VALUES (! A’ y ! YYY’) o
,(TAE, *000) COL1 COL2 CaLs

JOAE, YY) e e e

) AE 00O AEQCOO
SELECT coL1 AE YYY AEYYY
, COL2 A YYY AYYY
, COL1 CONCAT COL2 AS COL3
FROM TEMP1

ORDER BY COL3;
Figure 219, CONCAT used with ORDER BY - wrong output sequence

Converting the fields being concatenated to character gets around this problem:

Scalar Functions 81

WTH TEMPL (COL1, COL2) AS
(VALUES ("A , 'YYY)

. AE, ' 000)

L AE, YY)

)
SELECT ©O.1
, COL2
, CHAR(COL1, 2) CONCAT
CHAR(COL2, 3) AS COL3
FROM TEMPL
ORDER BY COL3;

Graeme Birchall ©

Figure 220, CONCAT used with ORDER BY - correct output sequence

WARNING: Never do an ORDER BY on a concatenated set of variable length fields. The
resulting row sequence is probably not what the user intended (see above).

COS

Returns the cosine of the argument where the argument is an angle expressed in radians. The

output format is double.

W TH TEMPL(N1) AS
(VALUES (0)

UNI ON ALL

SELECT NI + 10

FROM TEMP1

WHERE NI < 90)

SELECT N1
, DEC(RADI ANS(N1) , 4
, DEC(COS(RADI ANS(N
, DEC(SI N(RADI ANS(N
TEMPL;

=B

FROM

Figure 221, RADIAN, COS, and SN functions example

COSH

ANSVEER

N1 RAN CGs SIN
0 0.000 1.000 O0.000
10 0.174 0.984 0.173
20 0.349 0.939 0.342
30 0.523 0.866 0.500
40 0.698 0.766 0.642
50 0.872 0.642 0.766
60 1.047 0.500 O.866
70 1.221 0.342 0.939
80 1.396 0.173 0.984
90 1.570 0.000 1.000

Returns the hyperbolic cosine for the argument, where the argument is an angle expressed in

radians. The output format is double.

CoT

Returns the cotangent of the argument where the argument is an angle expressed in radians.

The output format is double.

DATE

Converts the input into a date value. The nature of the conversion process depends upon the

input type and length:

¢ Timestamp and date input have the date part extracted.

e Char or varchar input that is avalid string representation of a date or atimestamp (e.g.

"1997-12-23") is converted asis.

¢ Char or varchar input that is seven bytes long is assumed to be a Julian date value in the
format yyyynnn where yyyy is the year and nnn is the number of days since the start of

the year (in the range 001 to 366).

82

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

e Numeric input is assumed to have a value which represents the number of days since the
date "0001-01-01" inclusive. All numeric types are supported, but the fractional part of a
valueisignored (e.g. 12.55 becomes 12 which converts to "0001-01-12").

F DATE (— expression —) }

Figure 222, DATE function syntax

If the input can be null, the output will also support null. Null values convert to null output.

SELECT TS1 ANSVEER
, DATE(TS1) AS DTl —=——=—=—=—=—==—=——=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—==—==—=======
FROM SCALAR; TS1 DT1

1996- 04- 22- 23. 58. 58. 123456 04/ 22/ 1996
1996- 08- 15-15. 15. 15. 151515 08/ 15/ 1996
0001- 01- 01- 00. 00. 00. 000000 01/01/0001

Figure 223, DATE function example - timestamp input

W TH TEMP1(N1) AS ANSVEER
(VALUES (OOOOO]_) —==================
, (728000) NL D1
(730120)) el i
SELECT N1 1 01/01/0001
, DATE(N1) AS D1 728000 03/13/1994
FROM TEMP1, 730120 01/01/2000

Figure 224, DATE function example - numeric input

DAY

Returns the day (as in day of the month) part of a date (or equivalent) value. The output for-
mat is integer.

SELECT DT1 ANSVEER
FROM SCALAR DT1 DAY1

WHERE DAY(DT1) > 10; eeeeaaaaen N
04/ 22/ 1996 22
08/ 15/ 1996 15

Figure 225, DAY function examples

If the input is adate or timestamp, the day value must be between 1 and 31. If theinputisa
date or timestamp duration, the day value can ran from -99 to +99, though only -31 to +31
actually make any sense:

SELECT DT1 ANSVEER
, DAY(DT]_) AS DAY1 ———————————————————————=—=
, DT1 -’ 1996- 04- 30’ AS DUR2 DT1 DAYl DUR2 DAY2
, DAY(DT1 -'1996-04-30") AS DAY2 = -----mmmmn mmmm mmim oo
FROM SCALAR 04/ 22/ 1996 22 -8. -8
VWHERE DAY(DT1) > 10 08/ 15/ 1996 15 315. 15
ORDER BY DT1;

Figure 226, DAY function, using date-duration input

NOTE: A date-duration is what one gets when one subtracts one date from another. The
field is of type decimal(8), but the value is not really a number. It has digits in the format:
YYYYMMDD, so in the above query the value "315" represents 3 months, 15 days.

DAYNAME

Returns the name of the day (e.g. Friday) as contained in a date (or equivalent) value. The
output format is varchar(100).

Scalar Functions 83

SELECT DT1
, DAYNAVE(DT1) AS Dv1
, LENGTH(DAYNAVE(DT1)) AS DY2

FROM SCALAR

WHERE DAYNAVE(DT1) LIKE

ORDER BY DT1;

Figure 227, DAYNAME function example

' Ya%y’

DAYOFWEEK

01/01/ 0001
04/ 22/ 1996
08/ 15/ 1996

Graeme Birchall ©

DY1 DY2
Monday 6
Monday 6
Thur sday 8

Returns a number that represents the day of the week (where Sunday is 1 and Saturday is 7)
from a date (or equivalent) value. The output format is integer.

SELECT DT1
, DAYOFVEEK(DT1) AS DVK
, DAYNAVE(DT1) ~ AS DNM

FROM SCALAR

ORDER BY DVK
, DNM

Figure 228, DAYOFWEEK function example

DAYOFWEEK_ISO

01/ 01/ 0001
04/ 22/ 1996
08/ 15/ 1996

2
2 Monday
5 Thur sday

Returns an integer value that represents the day of the "I1SO" week. An 1SO week differs from
an ordinary week in that it begins on aMonday (i.e. day-number = 1) and it neither ends nor
begins at the exact end of the year. Instead, the final 1SO week of the prior year will continue
into the new year. This often means that the first days of the year have an 1SO week number
of 52, and that one gets more than seven daysin ayear for 1SO week 52.

W TH
TEMPL (N) AS

(VALUES (0)

UNI ON ALL

SELECT N+1

FROM TEMP1

WHERE N < 9),
TEMP2 (DT1) AS

(VALUES(DATE(’ 1999- 12- 25’))

, (DATE(’ 2000- 12-24"))),

TEMP3 (DT2) AS

(SELECT DT1 + N DAYS

FROM TEMP1

, TEMP2)

SELECT CHAR(DT2, | SO) AS DATE
, SUBSTR(DAYNAMVE(DT2) , 1, 3) AS DAY
, WVEEK(DT2) AS W
, DAYOFVEEK(DT2) AS D
, VEEK_| SO(DT2) AS W
, DAYOFVEEK | SO(DT2) AS |

FROM TEMP3

ORDER BY 1;

Figure 229, DAYOFWEEK _|SO function example

DAYOFYEAR

1999-12-25
1999-12- 26
1999-12- 27
1999-12-28
1999-12-29
1999-12-30
1999-12-31
2000-01-01
2000-01-02
2000-01-03
2000- 12- 24
2000-12- 25
2000- 12- 26
2000-12- 27
2000- 12- 28
2000-12- 29
2000- 12- 30
2000-12-31
2001-01-01
2001-01-02

Sun 54
Mon 1
Tue 1

DAY WD W |
Sat 52 7 51 6
Sun 53 1 51 7
Mon 53 2 52 1
Tue 53 3 52 2
Wed 53 4 52 3
Thu 53 5 52 4
Fri 53 6 52 5
Sat 17 52 6
Sun 2 1527
Mn 22 11
Sun 53 1 51 7
Mon 53 2 52 1
Tue 53 3 52 2
Wed 53 4 52 3
Thu 53 5 52 4
Fri 53 6 52 5
Sat 53 7 52 6

1 7

2 1

3 2

Returns a number that is the day of the year (from 1 to 366) from a date (or equivalent) value.

The output format is integer.

84

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT Dr1 ANSVER
, DAYOFYEAR(DT1) AS DYR ===============
FROM SCALAR DTl DYR

ORDER BY DYR, e .-
01/ 01/ 0001 1
04/ 22/ 1996 113
08/ 15/ 1996 228

Figure 230, DAYOFYEAR function example

DAYS

Converts adate (or equivaent) value into a number that represents the number of days since
the date "0001-01-01" inclusive. The output format is INTEGER.

SELECT DT1 ANSVER
, DAYS(DT1) AS Dyl ==================

FROM SCALAR DT1 DY1

ORDER BY DY1I o deeeeeeeeemaes
, DT1; 01/ 01/ 0001 1

04/ 22/ 1996 728771
08/ 15/1996 728886

Figure 231, DAYS function example

The DATE function can act as the inverse of the DAY S function. It can convert the DAY S
output back into avalid date.

DBCLOB
Convertsthe input (1st argument) to a dbclob. The output length (2nd argument) is optional.

DEC or DECIMAL

Converts either character or numeric input to decimal. When the input is of type character, the
decimal point format can be specified.

}TEEEH\AAL (— number L,precision |) }
L,scale J
(—char ‘)

L , precision

Figure 232, DECIMAL function syntax

W TH TEMP1(N1, N2, C1, C2) AS ANSVEER
(VALUES (123 ——=—==—====—=—==—===—==—==—=======
, 1E2 DEC1 DEC2 DEC3 DEC4
B 1 R e
,' 567%8")) 123. 100.0 123.4 567.8
SELECT DEC(N1, 3) AS DEC1
, DEC(N2, 4, 1) AS DEC2
, DEC(C1, 4, 1) AS DEC3
,DEC(C2,4,1,’ %) AS DEC4
FROM TEMPL;

Figure 233, DECIMAL function examples

WARNING: Converting a floating-point number to decimal may get different results from
converting the same number to integer. See page 266 for a discussion of this issue.

Scalar Functions 85

Graeme Birchall ©

DEGREES

Returns the number of degrees converted from the argument as expressed in radians. The out-
put format is double.

DEREF

Returns an instance of the target type of the argument.

DECRYPT_BIN and DECRYPT_CHAR

Decrypts data that has been encrypted using the ENCRY PT function. Use the BIN function to
decrypt binary data (e.g. BLOBS, CLOBS) and the CHAR function to do character data. Nu-
meric data cannot be encrypted.

}_[DECRYPT_BIN __ encrypted data) }
DECRYPT CHART _ password |
Figure 234, DECRYPT function syntax

If the password is null or not supplied, the value of the encryption password special register
will be used. If it isincorrect, a SQL error will be generated.

SELECT I D
, NAMVE
, DECRYPT_CHAR(NAME2, ' CLUELESS') AS NAME3
, GETHI NT(NAME2) AS HI NT
, NAME2

FROM (SELECT 1D

, NAMVE
, ENCRYPT(NAME, * CLUELESS ,’ MY BOSS') AS NAVE2
FROM STAFF
WHERE 1D < 30
) AS XXX
ORDER BY I D

Figure 235, DECRYPT_CHAR function example

DIFFERENCE

Returns the difference between the sounds of two strings as determined using the SOUNDEX
function. The output (of type integer) ranges from 4 (good match) to zero (poor match).

SELECT A. NAME AS N1 ANSVER
, SQJNDEX(A. NANE) AS S1 e e
, B. NAME AS N2 N1 S1 N2 S2 DF
, SOUNDEX(B. NAME) AS S2 = m-mmmmm mmmm aaiam aaoo
, DI FFERENCE Sanders S536 Snei der S536 4
(A. NAME, B. NAME) AS DF Sanders S536 Snith S530 3
FROM STAFF A Sanders S536 Lundquist L532 2
, STAFF B Sanders S536 Daniel s D542 1
VWHERE A 1D =10 Sanders S536 Mdlinare M56 1
AND B.ID > 150 Sanders S536 Scoutten S350 1
AND B.ID < 250 Sanders S536 Abrahans Al165 O
ORDER BY DF DESC Sanders S536 Kerm sch K652 0
, N2 ASC, Sanders S536 Lu LO0O0 O

Figure 236, DIFFERENCE function example

NOTE: The difference function returns one of five possible values. In many situations, it
would imprudent to use a value with such low granularity to rank values.

86 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

DIGITS
Converts an integer or decimal value into a character string with leading zeros. Both the sign
indicator and the decimal point are lost in the translation.

SELECT S1 ANSVEER
, DA TS(S1) AS Ds1 ——==—====—==—=—==—===—==—=======
D1

, s1 DS1 D1 DD1
,DIGTS(Dl) ASDDL meemee o eeeme oo

FROM SCALAR, -2 00002 -2.4 024
0 00000 0.0 000

1 00001 1.8 018

Figure 237, DIGITS function examples

The CHAR function can sometimes be used as alternative to the DIGITS function. Their out-
put differs dlightly - see above for a comparison.

DLCOMMENT

Returns the comments value, if it exists, from a datalink value.

DLLINKTYPE
Returns the linktype value from a datalink value.

DLURLCOMPLETE
Returns the URL value from a datalink value with alinktype of URL.

DLURLPATH

Returns the path and file name necessary to access afile within a given server from a datalink
value with linktype of URL.

DLURLPATHONLY

Returns the path and file name necessary to access a file within a given server from a datalink
value with alinktype of URL. The value returned never includes afile access token.

DLURLSCHEME
Returns the scheme from a datalink value with alinktype of URL.

DLURLSERVER
Returns the file server from a datalink value with a linktype of URL.

DLVALUE
Returns adatalink value.

DOUBLE or DOUBLE_PRECISION

Converts numeric or valid character input to type double. This function is actually two with
the same name. The one that converts numeric input isa SY SIBM function, while the other
that handles character input isa SY SFUN function. The keyword DOUBLE_PRECISION has
not been defined for the latter.

Scalar Functions 87

Graeme Birchall ©

W TH TEMP1(Cl, D1) AS ANSWVER (out put short ened)
(VALUES (’ 12345’ , 12. 4) ————————————————————————————————=—=—
,(’-23.5",1234) C1D D1D
L LEHAB' L -234) el .
, (' -2e05 ,+2.4)) +1. 23450000E+004 +1. 24000000E+001
SELECT DOUBLE(C1) AS C1D -2.35000000E+001 +1.23400000E+003
, DOUBLE(D1) AS D1D +1. 00000000E+045 -2. 34000000E+002
FROM TEMP1, -2. 00000000E+005 +2.40000000E+000

Figure 238, DOUBLE function examples

See page 266 for a discussion on floating-point number manipulation.

ENCRYPT
Returns a encrypted rendition of the input string. The input must be char or varchar. The out-

put is varchar for bit data.
L,password ‘ﬁf) }
hint |

FENCRYPT — (— encrypted data

Figure 239, DECRYPT function syntax
The input values are defined as follows:

¢ ENCRYPTED DATA: A char or varchar string 32633 bytes that is to be encrypted. Nu-
meric data must be converted to character before encryption.

e PASSWORD: A char or varchar string of at least six bytes and no more than 127 bytes. If
the value is null or not provided, the current value of the encryption password specia
register will be used. Be aware that a password that is padded with blanksis not the same
as one that lacks the blanks.

e HINT: A char or varchar string of up to 32 bytes that can be referred to if one forgets
what the password is. It isincluded with the encrypted string and can be retrieved using
the GETHINT function.

The length of the output string can be calculated thus:

* When the hint is provided, the length of the input data, plus eight bytes, plus the distance
to the next eight-byte boundary, plus thirty-two bytes for the hint.

* When the hint is not provided, the length of the input data, plus eight bytes, plus the dis-
tance to the next eight-byte boundary.

SELECT I D
, NAMVE
, ENCRYPT(NAME, ' THAT I DI OT"," MY BROTHER) AS NAME2
FROM STAFF
WHERE I D < 30
CORDER BY | D

Figure 240, ENCRYPT function example

EVENT_MON_STATE

Returns an operational state of a particular event monitor.

EXP
Returns the exponential function of the argument. The output format is double.

88 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH TEMPL(N1) AS ANSVER
UNI ON ALL N1 E1 E2

SELECT NI + 1 R T T
FROM TEMP1 +1. 00000000000000E+0 1
WHERE N1 < 10) +2.71828182845904E+0 2
SELECT N1 +7.38905609893065E+0 7
, EXP(N1) AS E1 +2. 00855369231876E+1 20

, SMALLI NT(EXP(NL1)) AS E2 +5. 45981500331442E+1 54

FROM TEMP1; . 48413159102576E+2 148
+4.03428793492735E+2 403
+1. 09663315842845E+3 1096
+2.98095798704172E+3 2980
+8. 10308392757538E+3 8103
+2. 2026465794806 7E+4 22026

QOWO~NOUI_WNEFO
+
[

[EnY

Figure 241, EXP function examples

FLOAT
Same as DOUBLE.

FLOOR

Returns the next largest integer value that is smaller than or equal to theinput (e.g. 5.945 re-
turns 5.000). The output field type will equal theinput field type.

SELECT D1 ANSWER (fl oat output shortened)
, FLOOR(D1) AS D2 ——=—=—=—=—=——=—=—=—==—=—=—=—=—=—==—=—==—=—=—=—=—=—==—=====
F1

, FLOOR(F1) AS F2 ----- B
FROM SCALAR; -2.4 -3. - 2. 400E+0 - 3. 000E+0
0.0 +0. +0. 000E+O +0. 000E+O
1.8 +1. +1. 800E+0 +1. 000E+0

Figure 242, FLOOR function examples

GENERATE_UNIQUE

Uses the system clock and node number to generate a value that is guaranteed unique (as long
as one does not reset the clock). The output is of type char(13) for bit data. There are no ar-
guments. The result is essentially atimestamp (set to GMT, not local time), with the node
number appended to the back.

SELECT ID
, GENERATE_UNI QUE() AS UNI QUE_VAL#1
, DEC(HEX(GENERATE_UNI QUE()), 26) AS UNI QUE_VAL#2
FROM STAFF
WHERE ID < 50
ORDER BY | D;
ANSVEER
I D UNIQUE_VAL#1 UNI QUE_VAL#2
NOTE: 2ND FIELD => 10 20011017191648990521000000.
|'S UNPRI NTABLE. => 20 20011017191648990615000000.
30 20011017191648990642000000.
40 20011017191648990669000000.

Figure 243, GENERATE_UNIQUE function examples

Observe that in the above example, each row gets a higher value. Thisis to be expected, and
isin contrast to a CURRENT TIMESTAMP call, where every row returned by the cursor will
have the same timestamp value. Also notice that the second invocation of the function on the
same row got alower value (than the first).

Scalar Functions 89

Graeme Birchall ©

In the prior query, the HEX and DEC functions were used to convert the output value into a
number. Alternatively, the TIMESTAMP function can be used to convert the date component
of the datainto avalid timestamp. In a system with multiple nodes, there is no guarantee that
this timestamp (alone) is unique.

Making Random

Onething that DB2 lacks is a random number generator that makes unique values. However,
if we flip the characters returned in the GENERATE_UNIQUE output, we have something
fairly close to what is needed. Unfortunately, DB2 aso lacks a REV ERSE function, so the
data flipping has to be done the hard way.

SELECT U1
, SUBSTR(UL, 20, 1) CONCAT SUBSTR(UL, 19, 1) CONCAT
SUBSTR(UL, 18, 1) CONCAT SUBSTR(UL, 17, 1) CONCAT
SUBSTR(UL, 16, 1) CONCAT SUBSTR(UL, 15, 1) CONCAT
SUBSTR(UL, 14, 1) CONCAT SUBSTR(UL, 13, 1) CONCAT
SUBSTR(UL, 12, 1) CONCAT SUBSTR(UL, 11, 1) CONCAT
SUBSTR(UL, 10, 1) CONCAT SUBSTR(UL, 09, 1) CONCAT
SUBSTR(UL, 08, 1) CONCAT SUBSTR(UL, 07, 1) CONCAT
SUBSTR(UL, 06, 1) CONCAT SUBSTR(UL, 05, 1) CONCAT
SUBSTR(UL, 04, 1) CONCAT SUBSTR(UL, 03, 1) CONCAT
SUBSTR(UL, 02, 1) CONCAT SUBSTR(UL, 01,1) AS U2

FROM (SELECT HEX(GENERATE_UNI QUE()) AS Ul

FROM STAFF
VWHERE | D < 50) AS XXX
CORDER BY UZ;
ANSVEER
Ul U2

20000901131649119940000000 04991194613110900002
20000901131649119793000000 39791194613110900002
20000901131649119907000000 70991194613110900002
20000901131649119969000000 96991194613110900002

Figure 244, GENERATE_UNIQUE output, characters reversed to make pseudo-random

Observe above that we used a nested table expression to temporarily store the results of the
GENERATE_UNIQUE calls. Alternatively, we could have put a GENERATE_UNIQUE call
inside each SUBSTR, but these would have amounted to separate function cals, and thereisa
very small chance that the net result would not always be unique.

GETHINT
Returns the password hint, if one isfound in the encrypted data.
SELECT ID

, NAME
, GETHI NT(NAME2) AS HI NT
FROM (SELECT 1D
, NAMVE
, ENCRYPT(NAME, ' THAT I DI OT",” MY BROTHER) AS NAME2
FROM STAFF
WHERE I D < 30 ANSVEER
ORDER BY 1 D; I D NAVE HI NT
10 Sanders MY BROTHER
20 Pernal MY BROTHER

Figure 245, GETHINT function example

90 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

GRAPHIC

Convertsthe input (1st argument) to a graphic data type. The output length (2nd argument) is
optional.

HEX
Returns the hexadecimal representation of avaue. All input types are supported.
W TH TEMP1(NL1) AS ANSVER
UNI ON ALL S SHX DHX FHX

SELECT NI + 1

FROM TEMP1

WHERE NI < 3)

SELECT SMALLI NT(N1) AS S
, HEX(SMALLI NT(N1)) AS SHX
, HEX(DEC(NL, 4, 0)) AS DHX
, HEX(DOUBLE(N1))~ AS FHX

FDFF 00003D 00000000000008C0
FEFF 00002D 00000000000000C0
FFFF 00001D 000000000000F0BF
00000C 0000000000000000
0100 00001C 000000000000FO3F
0200 00002C 0000000000000040

WNFRPORFRPNW!
o
o
o
o

FROM TEMP1, 0300 00003C 0000000000000840
Figure 246, HEX function examples, numeric data
SELECT C1 ANSVER
, HEX(C]_) AS CHX ettt ettt ettt
, V1 C1 CHX V1 VHX
VHEX(VL) AS VHX mmmmee e oo e
FROM SCALAR; ABCDEF 414243444546 ABCDEF 414243444546
ABCD 414243442020 ABCD 41424344
AB 414220202020 AB 4142
Figure 247, HEX function examples, character & varchar
SELECT DT1 ANSVER
, HEX(DT]_) AS DTHX S-S =====
T™L DT1 DTHX T™L TMHX

CHEX(TML) AS TMHX emomemmme oommeiin oeeii oo

FROM SCALAR 04/ 22/ 1996 19960422 23:58: 58 235858
08/ 15/ 1996 19960815 15: 15: 15 151515

01/01/ 0001 00010101 00: 00: 00 000000

Figure 248, HEX function examples, date & time

HOUR
Returns the hour (as in hour of day) part of atime value. The output format is integer.
SELECT T™ML ANSVEER
y FDJR(T'\/ﬂ_) AS HR ——m e ————
FROM SCALAR ™L HR
ORDER BY TML; -
00:00:00 O
15:15:15 15
23:58:58 23

Figure 249, HOUR function example

IDENTITY_VAL_LOCAL

Returns the most recently assigned value (by the current user) to an identity column. There-
sult typeis decimal (31,0), regardless of the field type of the identity column. See page 201
for detailed notes on using this function.

Scalar Functions 91

Graeme Birchall ©

CREATE TABLE SE¥

(IDENT_VAL INTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY
, CUR TS TI MESTAMP NOT NULL
, PRIVARY KEY (1 DENT_VAL));
COWM T;
| NSERT | NTO SEQ# VALUES(DEFAULT, CURRENT TI MESTAVP) ;

ANSVER
W TH TEMP (1DVAL) AS ======
(VALUES (1 DENTI TY_VAL_LOCAL())) | DVAL
SELECT * — —UTT
FROM TEMP; 1.

Figure 250, IDENTITY_VAL_LOCAL function usage

INSERT

Insert one string in the middle of ancther, replacing a portion of what was already there. If the
value to be inserted is either longer or shorter than the piece being replaced, the remainder of
the data (on the right) is shifted either |eft or right accordingly in order to make a good fit.

F INSERT (—— source ——, start-pos ——, del-bytes ——, new-valuef)H

Figure 251, INSERT function syntax

Usage Notes
e Acceptable input types are varchar, clob(1M), and blob(1M).
¢ Thefirst and last parameters must always have matching field types.

e Toinsert anew valuein the middle of another without removing any of what is already
there, set the third parameter to zero.

e Thevarchar output is aways of length 4K.

SELECT NAME ANSWER (4K out put fields shortened)
N NSERT(NAME, 3, 2, ' A) ———=—=—-——-————=-————-—---——————=—=—=====
, | NSERT(NAME, 3, 2, AB’) NAME 2 3 4
,INSERT(NAME, 3,2, ABC') —--mmmmm mmmmmoe mmmmiom oo

FROM STAFF Sanders SaAers SaABers SaABCers

VWHERE | D < 40; Per nal PeAal PeABal PeABCal

Mar enghi MaAnghi MaABnghi MaABCnghi
Figure 252, INSERT function examples

INT or INTEGER

The INTEGER or INT function converts either anumber or avalid character valueinto an
integer. The character input can have leading and/or trailing blanks, and a sign indictor, but it
can not contain a decimal point. Numeric decimal input works just fine.

SELECT D1 ANSVEER
| NTEGER(D]_) e
VINT(+1237) D1 2 3 4 5
JINT(P-123') aeeeeceeee e ceeen e
,INT(" 123 7)) -2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 253, INTEGER function examples

92 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

JULIAN_DAY

Converts adate (or equivalent) value into a number which represents the number of days
since January the 1st, 4,713 BC. The output format isinteger.

W TH TEMP1(DT1) AS ANSVEER
(VALUES ("’ 0001-01-01-00. 00. 00’) —==—=—=—=—===—=—==—=—==—=—=========
, ("1752-09-10-00. 00.00") DT DY DJ
,(71993-01-03-00.00.00") eemmeemeem eeoee oo
, (11993-01-03-23.59.59")) 01/ 01/ 0001 1 1721426
SELECT DATE(DT1) AS DT 09/ 10/ 1752 639793 2361218
, DAYS(DT1) AS DY 01/ 03/ 1993 727566 2448991
, JULI AN_DAY(DT1) AS DJ 01/ 03/ 1993 727566 2448991
FROM TEMP1,

Figure 254, JULIAN_DAY function example
Julian Days, A History

I happen to be a bit of an Astronomy nut, so what follows is a rather extended description
of Julian Days - their purpose, and history (taken from the web).

The Julian Day calendar is used in Astronomy to relate ancient and modern astronomical ob-
servations. The Babylonians, Egyptians, Greeks (in Alexandria), and others, kept very de-
tailed records of astronomical events, but they all used different calendars. By converting all
such observations to Julian Days, we can compare and correl ate them.

For example, asolar eclipseis said to have been seen at Ninevah on Julian day 1,442,454 and
alunar eclipse is said to have been observed at Babylon on Julian day number 1,566,839.
These numbers correspond to the Julian Calendar dates -763-03-23 and -423-10-09 respec-
tively). Thus the lunar eclipse occurred 124,384 days after the solar eclipse.

The Julian Day number system was invented by Joseph Justus Scaliger (born 1540-08-05 Jin
Agen, France, died 1609-01-21 Jin Leiden, Holland) in 1583. Although the term Julian Cal-
endar derives from the name of Julius Caesar, the term Julian day number probably does not.
Evidently, this system was named, not after Julius Caesar, but after its inventor's father, Julius
Caesar Scaliger (1484-1558).

The younger Scaliger combined three traditionally recognized temporal cycles of 28, 19 and
15 years to obtain a great cycle, the Scaliger cycle, or Julian period, of 7980 years (7980 is
the least common multiple of 28, 19 and 15). The length of 7,980 years was chosen as the
product of 28 times 19 times 15; these, respectively, are:

e Thenumber of years when dates recur on the same days of the week.

e Thelunar or Metonic cycle, after which the phases of the Moon recur on a particular day
in the solar year, or year of the seasons.

* Thecycleof indiction, originally a schedule of periodic taxes or government requisitions
in ancient Rome.

Thefirst Scaliger cycle began with Year 1 on -4712-01-01 (Julian) and will end after 7980
years on 3267-12-31 (Julian), which is 3268-01-22 (Gregorian). 3268-01-01 (Julian) isthe
first day of Year 1 of the next Scaliger cycle.

Astronomers adopted this system and adapted it to their own purposes, and they took noon
GMT -4712-01-01 as their zero point. For astronomers a day begins at hoon and runs until the
next noon (so that the nighttime falls conveniently within one "day"). Thus they defined the
Julian day number of aday as the number of days (or part of a day) elapsed since noon GMT
on January 1st, 4713 B.C.E.

Scalar Functions 93

Graeme Birchall ©

Thiswas not to the liking of all scholars using the Julian day number system, in particular,
historians. For chronologists who start "days" at midnight, the zero point for the Julian day
number system is 00:00 at the start of -4712-01-01 J, and thisis day 0. This means that 2000-
01-01 Gis 2,451,545 JD.

Since most days within about 150 years of the present have Julian day numbers beginning
with 24", Julian day numbers within this 300-odd-year period can be abbreviated. In 1975
the convention of the modified Julian day number was adopted: Given a Julian day number
JD, the modified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two
purposes:

« Daysbegin at midnight rather than noon.

» For datesin the period from 1859 to about 2130 only five digits need to be used to spec-
ify the date rather than seven.

MJD 0 thus corresponds to JD 2,400,000.5, which is twelve hours after noon on JD 2,400,000
= 1858-11-16. Thus MJD 0 designates the midnight of November 16th/17th, 1858, so day 0
in the system of modified Julian day numbersisthe day 1858-11-17.

The following SQL statement uses the JULIAN_DAY function to get the Julian Date for cer-
tain days. The same calculation is also done using hand-coded SQL.

SELECT BD
, JULI AN_DAY(BD)
(1461 * (YEAR(BD) + 4800 + (MONTH(BD) - 14) / 12)) / 4
%(367 * (MONTH(BD)- 2 - 12*((MONTH(BD)-14)/12)))/12
-(3 * ((YEAR(BD) + 4900 + (MONTH(BD) - 14) / 12) 7 100)) / 4
+DAY(BD) - 32075
FROM (SELECT BI RTHDATE AS BD
FROM EMPLOYEE
WHERE MDINIT ="'R ANSVER
) AS XXX —==—=—=—=—=—=—=—=—==—=—==—=—=—==—=======
ORDER BY BD; BD 2 3

05/ 17/ 1926 2424653 2424653
03/ 28/ 1936 2428256 2428256
07/ 09/ 1946 2432011 2432011
04/ 12/ 1955 2435210 2435210

Figure 255, JULIAN_DAY function examples

Julian Dates

Many computer users think of the "Julian Date" as a date format that has a layout of "yynnn"
or "yyyynnn" where "yy" isthe year and "nnn" is the number of days since the start of the
same. A more correct use of the term "Julian Date" refersto the current date according to the
calendar as originally defined by Julius Caesar - which has aleap year on every fourth year.
In the US/UK, this calendar was in effect until "1752-09-14". The days between the 3rd and
13th of September in 1752 were not used in order to put everything back in sync. In the twen-
tieth century, to derive the Julian date one must subtract 15 days from the relevant Gregorian
date (e.9.1994-01-22 becomes 1994-01-07).

The following SQL illustrates how to convert a standard DB2 Gregorian Date to an equiva-
lent Julian Date (calendar) and a Julian Date (output format):

94 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

ANSVER
DT DJ1 DJ2

WTH TEMPL(DT1) AS ememeeie e oo

(VALUES (’ 1997-01-01') 01/ 01/ 1997 12/17/1996 1997001

,(11997-01-02') 01/02/ 1997 12/18/1996 1997002

L (1 1997-12-31")) 12/ 31/ 1997 12/ 16/ 1997 1997365

SELECT DATE(DT1) AS DT

, DATE(DT1) - 15 DAYS AS DJ1

, YEAR(DT1) * 1000 + DAYOFYEAR(DT1) AS DJ2
FROM TEMPL;

Figure 256, Julian Date outputs

WARNING: DB2 does not make allowances for the days that were not used when English-
speaking countries converted from the Julian to the Gregorian calendar in 1752

LCASE or LOWER

Coverts amixed or upper-case string to lower case. The output is the same data type and
length as the input.

SELECT NAME ANSVEER
, LCASE(NANE) AS LNAVE ———————————————————=—=—=—=—==
, UCASE(NAME) AS UNAME NAME LNANVE UNANME
FROM STAFF il iialilo ol
WHERE |ID < 30; Sanders sanders SANDERS

Per nal per nal PERNAL
Figure 257, LCASE function example

Documentation Comment

According to the DB2 UDB V8.1 SQL Reference, the LCASE and UCASE functions are the
inverse of each other for the standard alphabetical characters, "a" to "z", but not for some odd
European characters. Therefore LCASE(UCASE(string)) may not equal LCA SE(string).

This may be true from some code pages, but it is not for the one that | use. The following re-
cursive SQL illustrates the point. It shows that for every ASCII character, the use of both
functions gives the same result as the use of just one:

W TH TEMP1 (N1, Cl) AS ANSVER
(VALUES (SMALLI NT(0), CHR(0)) —================
UNI ON ALL N1 C1 UL U2 L1 L2
SELECT N1 + 1 e me a- a- o oo
, CHR(N1 + 1) <no rows>

FROM TEMP1
WHERE N1 < 255

)

SELECT N1
,Cl
, UCASE(C1) AS UL
, UCASE(LCASE(C1)) AS U2
, LCASE(C1) AS L1
, LCASE(UCASE(C1)) AS L2

FROM TEMPL
WHERE UCASE(Cl) <> UCASE(LCASE(Cl))
OR LCASE(Cl) <> LCASE(UCASE(CL)):

Figure 258, LCASE and UCASE usage on special characters

LEFT

The LEFT function has two arguments: Thefirst is an input string of type char, varchar, claob,
or blob. The second is a positive integer value. The output is the left most charactersin the
string. Trailing blanks are not removed.

Scalar Functions 95

Graeme Birchall ©

W TH TEMP1(Cl) AS ANSVEER
, (" ABC ") C1 c2 L2
,("ABC ’)) eeee e aee --
SELECT C1 ABC AB 4
, LEFT(CL,4) AS C2 ABC ABC 4
, LENGTH(LEFT(C1,4)) AS L2 ABC ABC 4

FROM TEMP1;
Figure 259, LEFT function examples

If theinput is either char or varchar, the output is varchar(4000). A column thislong isanui-
sance to work with. Where possible, use the SUBSTR function to get around this problem.

LENGTH

Returns an integer value with the internal length of the expression (except for double-byte
string types, which return the length in characters). The value will be the same for al fieldsin
a column, except for columns containing varying-length strings.

SELECT LENGTH(D1) ANSVEER
, LENGTH(Fl) ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—===—===
" LENGTH(S1) 1 2 3 4 5
" LENGTH(C1)
" LENGTH(RTR M C1)) 2 8 2 6 6
FROM SCALAR; 2 8 2 6 4
2 8 2 6 2
Figure 260, LENGTH function examples
LN or LOG
Returns the natural logarithm of the argument (same as LOG). The output format is double.
W TH TEMPL(N1) AS ANSVEER
(VALUES (1) , (123) , (1234) ————=—=—=—=—=—=——=—=—=—=—=—=——=—=—=—=—=—=—=—=—=—====
. (12345), (123456)) NL L1
SELECT NI T ..
,LOG(N1) AS L1 1 +0. 00000000000000E+000
FROM TEMPL, 123 +4.81218435537241E+000

1234 +7.11801620446533E+000
12345 +9. 42100640177928E+000
123456 +1.17236400962654E+001
Figure 261, LOG function example

LOCATE

Returns an integer value with the absolute starting position of the first occurrence of the first
string within the second string. If there is no match the result is zero. The optional third
parameter indicates where to start the search.

F LOCATE (—find-string ——, look-in-string

)
L, start-pos. J }
Figure 262, LOCATE function syntax

Theresult, if there isamatch, is aways the absolute position (i.e. from the start of the string),
not the relative position (i.e. from the starting position).

96 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT C1 ANSVER
, LmATE(’ D, C]_) —==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=========
, LOCATE(' D', C1,2) cl 2 3 4 5
, LOCATE(' EF ,C1) e
, LOCATE(' A, C1,2) ABCDEF 4 4 5 0
FROM SCALAR, ABCD 4 4 0 0
AB 0 0 0 0
Figure 263, LOCATE function examples
LOG or LN
See the description of the LN function.
LOG10
Returns the base ten logarithm of the argument. The output format is double.
W TH TEMP1(N1) AS ANSVEER
(VALUES (1), (123),(1234) ——=—=—=—=—=-=o--o-————-----soo—=—=—=-====
, (12345), (123456)) N1 L1
SELECT NL e e
, LOGLO(N1) AS L1 1 +0. 00000000000000E+000
FROM TEMP1; 123 +2.08990511143939E+000

1234 +3. 09131515969722E+000
12345 +4.09149109426795E+000
123456 +5. 09151220162777E+000

Figure 264, LOG10 function example

LONG_VARCHAR

Convertsthe input (1st argument) to along_varchar data type. The output length (2nd argu-
ment) is optional.

LONG_VARGRAPHIC

Convertsthe input (1st argument) to along_vargraphic data type. The output length (2nd ar-
gument) is optional.

LOWER
See the description for the LCASE function.

LTRIM

Remove leading blanks, but not trailing blanks, from the argument.

W TH TEMP1(Cl) AS ANSWER

(VALUES (’ ABC’) —e e ———
(" ABC ") Cl (07) L2
L(PABC YY) i e -

SELECT C ABC ABC 3
,LTRIM C1) AS 2 ABC ABC 4
, LENGTH(LTRI M C1)) AS L2 ABC ABC 5

FROM TEMP1;

Figure 265, LTRIM function example

MICROSECOND

Returns the microsecond part of atimestamp (or equivalent) value. The output isinteger.

Scalar Functions 97

Graeme Birchall ©

SELECT TS1 ANSVER
Y CR%ECO\]D(TS]_) ———————————————————————————————————=—=—=
FROM SCALAR TS1 2
ORDER BY TS1; e e e i oaois oo
0001-01-01-00. 00. 00. 000000 0
1996- 04- 22- 23. 58. 58. 123456 123456
1996- 08- 15-15. 15. 15. 151515 151515

Figure 266, MICROSECOND function example

MIDNIGHT_SECONDS

Returns the number of seconds since midnight from atimestamp, time or equivalent value.
The output format is integer.

SELECT TS1 ANSVEER
, M DNI GHT_SEOO\IDS(TS]_) e e e e e e e]
, HOUR(TS1) *3600 + TS1 2 3
M NUTE(TS1)*60 + memmmmmmmmmmmmcmmoccomeo cmea e
SECOND(TS1) 0001-01-01-00. 00. 00. 000000 0 0
FROM SCALAR 1996- 04- 22- 23. 58. 58. 123456 86338 86338
ORDER BY TSI, 1996- 08- 15-15. 15. 15. 151515 54915 54915

Figure 267, MIDNIGHT_SECONDS function example

Thereis no single function that will convert the MIDNIGHT_SECONDS output back into a
valid time value. However, it can be done using the following SQL.:

ANSWER
M TM

W TH TEMPL (MB) AS 0 00: 00: 00
(SELECT M DNI GHT_SECONDS(TS1) 54915 15:15: 15
FROM SCALAR 86338 23:58: 58
)
SELECT M5

, SUBSTR(DI Gl TS(M5/ 3600 .9 I]

SUBSTR(DI G TS((M5- ((M/ 3600) *3600))/60),9) || ':’ ||

SUBSTR(DI G TS(M- ((M5/ 60) * 60)). 9) AS T™
FROM TEMPL
ORDER BY 1;

Figure 268, Convert MIDNIGHT_SECONDS output back to a time value

NOTE: Imagine a column with two timestamp values: "1996-07-15.24.00.00" and "1996-
07-16.00.00.00". These two values represent the same point in time, but will return differ-
ent MIDNIGHT_SECONDS results. See the chapter titled "Quirks in SQL" on page 257 for
a detailed discussion of this problem.

MINUTE
Returns the minute part of atime or timestamp (or equivalent) value. The output is integer.
SELECT TS1 ANSVEER
Y NUTE(TS]_) ————————————-o-o----—-—————=———=—=======
FROM SCALAR TS1 2
ORDER BY TS1; e oo
0001- 01- 01- 00. 00. 00. 000000 0
1996- 04- 22- 23. 58. 58. 123456 58
1996- 08- 15- 15. 15. 15. 151515 15

Figure 269, MINUTE function example

98 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

MOD

Returns the remainder (modulus) for the first argument divided by the second. In the follow-
ing example the last column uses the MOD function to get the modulus, while the second to
last column obtains the same result using simple arithmetic.

W TH TEMPL(NL, N2) AS ANSVEER
UNION ALL NI N2 DIV M1 M2
SELECT NL + 13

N2 - 4 .31 11 -2 -9 -9
FROM TEMP1 -18 7 -2 -4 -4
WHERE NI < 60 -5 3 -1 -2 -2

) 8 -1 -8 0 O

SELECT N1 21 -5 -4 1 1
N2 34 -9 -3 7 7
. N1/ N2 AS DI V 47 -13 -3 8 8
L NL- ((NL/ N2) *N2) AS MDL 60 -17 -3 9 9
, MOD(N1, N2) AS MD2

FROM TEMP1
ORDER BY 1;

Figure 270, MOD function example

MONTH

Returns an integer value in the range 1 to 12 that represents the month part of a date or time-
stamp (or equivalent) value.

MONTHNAME

Returns the name of the month (e.g. October) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSVEER
, Nu\]TH(DT]_) —==—=—=—=====—======—=======
, MONTHNAME(DT1) DT1 2 3
FROM SCALAR il Ce e
CRDER BY DT1; 01/ 01/ 0001 January

1
04/ 22/ 1996 4 April
08/ 15/ 1996 8 August

Figure 271, MONTH and MONTHNAME functions example

MULTIPLY_ALT

Returns the product of two arguments as a decimal value. Use this function instead of the
multiplication operator when you need to avoid an overflow error because DB2 is putting
aside too much space for the scale (i.e. fractional part of number) Valid input is any exact
numeric type: decimal, integer, bigint, or smallint (but not float).

W TH TEMPL (N1, N2) AS

(VALUES (DECI MAL(1234, 10) ANSVER
, DECI MAL(1234, 10))) ========
SELECT N1 >> 1234,
, >> 1234,
CNL % N2 AS P1 >> 1522756.
LT (NL, N2) AS P2 >> 1522756.
, MULTI PLY_ALT(NL, N2) AS P3 >> 1522756.

FROM TEMPL;
Figure 272, Multiplying numbers - examples

When doing ordinary multiplication of decimal values, the output precision and the scale is
the sum of the two input precisions and scales - with both having an upper limit of 31. Thus,

Scalar Functions 99

Graeme Birchall ©

multiplying a DEC(10,5) number and a DEC(4,2) number returns a DEC(14,7) number. DB2
alwaystriesto avoid losing (truncating) fractiona digits, so multiplying a DEC(20,15) num-

ber with a DEC(20,13) number returns a DEC(31,28) number, which is probably going to be
too small.

The MULTIPLY_ALT function addresses the multiplication overflow problem by, if need be,
truncating the output scale. If it is used to multiply a DEC(20,15) number and a DEC(20,13)
number, the result is a DEC(31,19) number. The scale has been reduced to accommodate the
required precision. Be aware that when there is a need for ascale in the output, and it is more
than three digits, the function will leave at least three digits.

Below are some examples of the output precisions and scales generated by this function:
<--MULTIPLY_ALT->

RESULT RESULT SCALE PRECSI ON
| NPUT#1 INPUT#2 "*" OPERATOR MULTIPLY ALT TRUNCATD TRUNCATD
DEC(05, 00) DEC(05, 00) DEC(10, 00) DEC(10, 00) NO NO
DEC(10, 05) DEC(11,03) DEC(21, 08) DEC(21, 08) NO NO
DEC(20, 15) DEC(21, 13) DEC(31, 28) DEC(31, 18) YES NO
DEC(26, 23) DEC(10, 01) DEC(31, 24) DEC(31, 19) YES NO
DEC(31, 03) DEC(15,08) DEC(31,11) DEC(31, 03) YES YES

Figure 273, Decimal multiplication - same output lengths

NODENUMBER

Returns the partition number of the row. Theresult is zero if the table is not partitioned. The
output is of type integer, and is never null.

NODENUMBER —(— column-name —) }
Figure 274, NODENUMBER function syntax
SELECT NODENUVBER(ID) AS NN ANSWER
FROV' STAFF ===
VHERE ID = 10; NN
0

Figure 275, NODENUMBER function example

The NODENUMBER function will generate a SQL error if the column/row used can not be
related directly back to specific row in areal table. Therefore, one can not use this function on
fieldsin GROUP BY statements, nor in some views. It can also cause an error when used in
an outer join, and the target row failed to match in the join.

NULLIF

Returns null if the two values being compared are equal, otherwise returns the first value.

SELECT S1 ANSVEER
c1

, s1 2 cl 4
UNULLIF(CL,' AB') ool Tl
FROM SCALAR -2 -2 ABCDEF ABCDEF
WHERE NULLIF(0,0) 1S NULL; 0 - ABCD ABCD
1 1AB -

Figure 276, NULLIF function examples

PARTITION

Returns the partition map index of the row. Theresult is zero if the tableis not partitioned.
The output is of type integer, and is never null.

100 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT PARTITION(I D) AS PP ANSVEER
FROM STAFF i
WHERE ID = 10; PP
POSSTR

Returns the position at which the second string is contained in the first string. If thereis no
match the value is zero. Thetest is case sensitive. The output format is integer.

SELECT C1 ANSVEER
, PCSSTR(C1, " ') AS P1 —=—==—=—==—==—==—==—===
, POSSTR(C1,’ CD') AS P2 Cl P1L P2 P3
'PGSSTR(CI.'cd') AS P .. S
FROM SCALAR AB 3 0 0
ORDER BY 1; ABCD 5 3 0
ABCDEF 0 3 0

Figure 277, POSSTR function examples
POSSTR vs. LOCATE

The LOCATE and POSSTR functions are very similar. Both look for matching strings
searching from the left. The only functional differences are that the input parameters are re-
versed and the LOCATE function enables one to begin the search at somewhere other than
the start. When either is suitable for the task at hand, it is probably better to use the POSSTR
function because it isa SY SIBM function and so should be faster.

SELECT C1 ANSVEER
, P%STR(c1L,’') AS P1 —=—=—=—=—=—=—=—=——=—=—=—=—=—=—=—=—=========
LOCATE(’ ',Cl) AS L1 c1 PL L1 P2 L2 P3 L3 L4
' POSSTR(CL,’ CD') AS P2 DD DI IT
, LOCATE(' CD',Cl) AS L2 AB 3 3 0 0 0 O O
, POSSTR(C1,'cd’) AS P3 ABCD 5 5 3 3 0 0 4
, LOCATE(' cd’,Cl) AS L3 ABCDEF 0 0 3 3 0 0 4

,LOCATE(' D, C1,2) AS L4
FROM SCALAR
ORDER BY 1,

Figure 278, POSSTR vs. LOCATE functions

POWER
Returns the value of the first argument to the power of the second argument
W TH TEMPL(NL) AS ANSVER
(VALUES (1), (10), (100)) ——=—=—=—=—=-=o--o-————-----soo—=—=—=-====
SELECT N1 N1 P1 P2 P3
,POAER(NL, 1) AS Pl seeeees meemee e oo
, POAER(NL, 2) AS P2 1 1 1 1
, POAER(N1, 3) AS P3 10 10 100 1000
FROM TEMP1, 100 100 10000 1000000

Figure 279, POWER function examples

QUARTER

Returns an integer value in the range 1 to 4 that represents the quarter of the year from a date
or timestamp (or equivalent) value.

RADIANS

Returns the number of radians converted from the input, which is expressed in degrees. The
output format is double.

Scalar Functions 101

Graeme Birchall ©

RAISE_ERROR

Causes the SQL statement to stop and return a user-defined error message when invoked.
There are alot of usage restrictions involving this function, see the SQL Reference for details.

H RAISE_ERROR—— (——sqlstate —— ,error-message——) —}

Figure 280, RAISE_ERROR function syntax

SELECT S1 ANSVEER
y C:ASE preseses bbby
WHEN S1 < 1 THEN S1 s1 S2
ELSE RAl SE ERROR(’ 80001’ ,C1) ecmee oo
END AS S2 -2 -2
FROM SCALAR 0 0

SQLSTATE=80001
Figure 281, RAISE_ERROR function example

RAND

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 259 for a detailed description of this issue.

Returns a pseudo-random floating-point value in the range of zero to one inclusive. An op-
tional seed value can be provided to get reproducible random results. This function is espe-
cialy useful when oneistrying to create somewhat realistic sample data.

Usage Notes

¢ The RAND function returns any one of 32K distinct floating-point values in the range of
zero to one inclusive. Note that many equivalent functions in other languages (e.g. SAS)
return many more distinct values over the same range.

e Thevalues generated by the RAND function are evenly distributed over the range of zero
to oneinclusive.

* A seed can be provided to get reproducible results. The seed can be any valid number of
type integer. Note that the use of a seed alone does not give consistent results. Two dif-
ferent SQL statements using the same seed may return different (but internally consistent)
sets of pseudo-random numbers.

* |f theseed valueis zero, theinitial result will also be zero. All other seed values return
initial values that are not the same as the seed. Subsequent calls of the RAND function in
the same statement are not affected.

« If there are multiple references to the RAND function in the same SQL statement, the
seed of the first RAND invocation is the one used for all.

e If theseed valueis not provided, the pseudo-random numbers generated will usualy be
unpredictable. However, if some prior SQL statement in the same thread has already in-
voked the RAND function, the newly generated pseudo-random numbers "may" continue
where the prior ones left off.

Typical Output Values

The following recursive SQL generates 100,000 random numbers using two as the seed value.
The generated data is then summarized using various DB2 column functions:

102 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

WTH TEMP (NUM RAN) AS
(VALUES (1 NT(1)

, RAND(2))
UNI ON ALL
SELECT NUM + 1
, RAND()
FROM TEMP
WHERE NUM < 100000 ANSVER
) e p—y—
SELECT COUNT(*) AS #RONS ==> 100000
, COUNT(DI STI NCT RAN) AS #VALUES ==> 31242
, DEC(AVG(RAN) , 7, 6) AS AVG RAN ==> 0. 499838
, DEC(STDDEV(RAN), 7,6) AS STD DEV 0. 288706
, DEC(M N(RAN) , 7, 6) AS M N_RAN 0. 000000
, DEC(MAX(RAN) , 7, 6) AS MAX_RAN 1. 000000
, DEC{ MAX(RAN) , 7. 6) -
DEC(M N(RAN) , 7, 6) AS RANGE 1. 000000
, DEC{ VAR(RAN) , 7, 6) AS VARI ANCE 0. 083351
FROM TEWP

Figure 282, Sample output from RAND function

Observe that less than 32K distinct numbers were generated. Presumably, this is because the
RAND function uses a 2-byte carry. Also observe that the values range from a minimum of
zero to a maximum of one.

WARNING: Unlike most, if not all, other numeric functions in DB2, the RAND function re-
turns different results in different flavors of DB2.

Reproducible Random Numbers

The RAND function creates pseudo-random numbers. This means that the output |ooks ran-
dom, but it is actually made using a very specific formula. If the first invocation of the func-
tion uses a seed value, al subsequent invocations will return aresult that is explicitly derived
from theinitial seed. To illustrate this concept, the following statement selects six random
numbers. Because of the use of the seed, the same six values will always be returned when
this SQL statement isinvoked (when invoked on my machine):

SELECT DEPTNO AS DNO ANSVER

, RAND(0) AS RAN —————————————————=————=——=—===
FROM DEPARTNMENT DNO RAN
WHERE DEPTNO < ' F e i eieeaa-
ORDER BY 1; AO0 +1.15970336008789E- 003

BO1 +2.35572374645222E-001
C01 +6.48152104251228E- 001
D01 +7.43736075930052E- 002
D11 +2.70241401409955E- 001
D21 +3.60026856288339E- 001

Figure 283, Make reproducible random numbers (use seed)

To get random numbers that are not reproducible, simply leave the seed out of the first invo-
cation of the RAND function. To illustrate, the following statement will give differing results
with each invocation:

SELECT DEPTNO AS DNO ANSVEER

FROM DEPARTMENT DNO RAN

VWHERE DEPTNO < ' D e e e eeaa
CRDER BY 1, A00 +2.55287331766717E-001

B01 +9.85290078432569E- 001
C01 +3.18918424024171E-001

Figure 284, Make non-reproducible random numbers (no seed)

Scalar Functions 103

Graeme Birchall ©

NOTE: Use of the seed value in the RAND function has an impact across multiple SQL
statements. For example, if the above two statements were always run as a pair (with
nothing else run in between), the result from the second would always be the same.

Generating Random Values

Imagine that we need to generate a set of reproducible random numbers that are within a cer-
tain range (e.g. 5to 15). Recursive SQL can be used to make the rows, and various scalar
functions can be used to get the right range of data.

In the following example we shall make alist of three columns and ten rows. Thefirst field is
a simple ascending sequence. The second is a set of random numbers of type smallint in the
range zero to 350 (by increments of ten). The last is a set of random decimal numbersin the
range of zero to 10,000.

WTH TEMP1 (COL1, COL2, COL3) AS ANSVER
(VALUES (0 ——=—=—=—=—=—=—=—=—==—=—===—===
, SMALLI NT(RAND(2) * 35) * 10 coLl coL2 co3
' DECI MAL(RAND() * 10000, 7, 2)) oo T T
UNI ON ALL 0 9342.32

SELECT CO.1 + 1

, SMALLI NT(RAND() *35) *10

, DECI MAL(RAND() *10000, 7, 2)
FROM TEMP1
WHERE COL1 + 1 < 10

) 130 8602. 86
SELECT * 340 184.94
FROM TEMPL, 310 5441.14

©CONOUIAWNRO
al
o
al
a
©
©
~
\l

70 9267.55
Figure 285, Use RAND to make sample data

NOTE: See the section titled "Making Sample Data" for more detailed examples of using
the RAND function and recursion to make test data.

Making Many Distinct Random Values

The RAND function generates 32K distinct random values. To get alarger set of (evenly dis-
tributed) random values, combine the result of two RAND calls in the manner shown below
for the RANZ2 column:

W TH TEMPL (COL1, RANL, RAN2) AS ANSVER
, RAND(2) COL#1 RAN#1 RAN#2
JRAND() +(RAND()/ 1E5)) eee e o
UNION ALL 30000 19698 29998
SELECT COL1 + 1
» RAND()
 RAND() +(RAND() / 1E5)
FROM TEMP1

WHERE COL1 + 1 < 30000

)

SELECT COUNT(*) AS COL#1
, COUNT(DI STI NCT RAN1) AS RAN#1
, COUNT(DI STI NCT RAN2) AS RAN#2

FROM TEMP1;

Figure 286, Use RAND to make many distinct random values

Observe that we do not multiply the two values that make up the RAN2 column above. If we
did this, it would skew the average (from 0.5 to 0.25), and we would always get a zero when-
ever either one of the two RAND functions returned a zero.

NOTE: The GENERATE_UNIQUE function can also be used to get a list of distinct values,
and actually does a better job that the RAND function. With a bit of simple data manipula-
tion (see page 89), these values can also be made random.

104 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Selecting Random Rows, Percentage

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 259 for a detailed description of this issue.

Imagine that you want to select approximately 10% of the matching rows from some table.
The predicate in the following query will do the job:

SELECT I D ANSVER
7NANE ————=——=—=—=—=—=—=
FROM STAFF ID NAMVE
VHERE RAND() < 0.2 e eeeeeee
ORDER BY | D 140 Fraye
190 Snei der
290 Quill

Figure 287, Randomly select 10% of matching rows

The RAND function randomly generates values in the range of zero through one, so the above
query should return approximately 10% the matching rows. But it may return anywhere from
zero to all of the matching rows - depending on the specific values that the RAND function
generates. If the number of rows to be processed is large, then the fraction (of rows) that you
get will be pretty close to what you asked for. But for small sets of matching rows, the result
set size is quite often anything but what you wanted.

Selecting Random Rows, Number

The following query will select five random rows from the set of matching rows. It begins (in
the nested table expression) by using the ROW_NUMBER function to assign row numbersto
the matching rows in random order (using the RAND function). Subsequently, those rows
with the five lowest row numbers are selected:

SELECT I D ANSVEER
, NAME e]
FROM (SELECT S. * ID NAME
, ROW NUMBER() OVER(ORDER BY RAND()) AS R --- --------
FROM STAFF S 10 Sanders
) AS XXX 30 Mar enghi
VWHERE R <=5 190 Snei der
ORDER BY | D, 270 Lea
280 Wl son

Figure 288, Sdlect five random rows
Use in DML

Imagine that in act of inspired unfairness, we decided to update a selected set of employee’s
salary to arandom number in the range of zero to $10,000. Thistoo is easy:
UPDATE STAFF

SET SALARY = RAND()*10000
WHERE I D < 50;

Figure 289, Use RAND to assign random salaries

REAL

Returns a single-precision floating-point representation of a number.

Scalar Functions 105

Graeme Birchall ©

ANSVERS
SELECT N1 AS DEC => 1234567890. 123456789012345678901
, DOUBLE(N1) AS DBL => 1. 23456789012346e+009
. REAL(N1) AS REL => 1. 234568e+009
| I NTEGER(N1) AS | NT => 1234567890
BIGINT(N1) AS BIG => 1234567890

FROM (SELECT 1234567890. 123456789012345678901 AS N1

FROM STAFF
VWHERE | D = 10) AS XXX;

Figure 290, REAL and other numeric function examples

REC2XML
Returns a string formatted with XML tags and containing column names and column data.

REPEAT
Repeats a character string "n" times.

H REPEAT — (— string-to-repeat — , #times —) }

Figure 291, REPEAT function syntax

SELECT I D ANSVER

, CHAR(REPEAT(NAIVE, 3) , 40) ——=——=—=—=—=—=—=—=—=—=——=——=—=—=—=—==—=—====
FROM STAFF ID 2
WHERE ID < 40 L il
ORDER BY | D 10 Sander sSander sSander s

20 Per nal Per nal Per nal
30 Mar enghi Mar enghi Mar enghi

Figure 292, REPEAT function example
REPLACE
Replaces al occurrences of one string with another. The output is of type varchar(4000).

H REPLACE— (— string-to-change — , search-for —, replace-with —) 4}
Figure 293, REPLACE function syntax

SELECT C1 ANSVEER
, REPLACE(C1, AB',’ XY’) AS R1 —====—==—======—=—========
, REPLACE(C1, ' BA',’ XY') AS R2 Cc1 R1 R2

FROM SCALAR e e ol

Figure 294, REPLACE function examples

The REPLACE function is case sensitive. To replace an input value, regardless of the case,
one can nest the REPLACE function calls. Unfortunately, thistechnique getsto be alittle
tedious when the number of charactersto replaceislarge.

SELECT C1 ANSVER
y REPLACE(REPLACE(sy
REPL ACE(REPLACE(C1, C1 R1
"AB XYY, tab Xy, e e
TAb’ XY), TaB ,’ XY') ABCDEF XYCDEF
FROM SCALAR; ABCD XYCD
AB XY

Figure 295, Nested REPLACE functions

106 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

RIGHT

Has two arguments: Thefirst is an input string of type char, varchar, clob, or blob. The sec-
ond is a positive integer value. The output, of type varchar(4000), is the right most characters
in the string.

W TH TEMP1(Cl) AS

(VALUES (° ABC)
(7 ABC ')
,("ABC "))

SELECT Cl

,RIGHT(C1, 4) AS C2

, LENGTH(RI GHT(C1, 4)) AS L2

FROM

Figure 296, RIGHT function examples

ROUND

TEMP1;

ABC
ABC

ABC ABC

ABC
BC

Rounds the rightmost digits of number (1st argument). If the second argument is positive, it
rounds to the right of the decimal place. If the second argument is negative, it rounds to the
left. A second argument of zero results rounds to integer. The input and output types are the
same, except for decimal where the precision will be increased by one - if possible. Therefore,
aDEC(5,2)field will be returned as DEC(6,2), and a DEC(31,2) field as DEC(31,2). To trun-
cate instead of round, use the TRUNCATE function.

W TH TEMP1(D1) AS
(VALUES (123. 400)

SELECT

, DEC(ROUND(D1, +2) ,
, DEC(ROUND(D1, +1) ,
, DEC(ROUND(D1, +0) ,
, DEC(ROUND(D1, - 1) ,
, DEC(ROUND(D1, - 2)

FROM

,(23. 450)
. (3.456)
, (. 056))
D

TEMP1;

123. 400 123
23.450 23
3. 456 3
0. 056

AS P2
AS P1
AS PO
AS N1
AS N2

Figure 297, ROUND function examples

RTRIM

Trims the right-most blanks of a character string.

SELECT

’

c1
RTRI M C1)
LENGTH(C1)

AS R1
AS R2

, LENGTH(RTRI M C1)) AS R3

FROM

Figure 298, RTRIM function example

SECOND

SCALAR

0. 060

23. 400
3. 500
0. 100

23. 000
3. 000
0. 000

20. 000
0. 000
0. 000

.400 123.400 123. 000 120. 000 100. 000

0. 000
0. 000
0. 000

Returns the second (of minute) part of atime or timestamp (or equivalent) value.

Scalar Functions

107

Graeme Birchall ©

SIGN

Returns -1 if the input number is less than zero, O if it equals zero, and +1 if it is greater than
zero. Theinput and output types will equal, except for decimal which returns double.

SELECT D1 ANSWER (fl oat output shortened)
, Sl G\l(D]_) e e e]
, F1 D1 2 F1 4
JSIGN(FL) e e el ool

FROM SCALAR; - -1. 000E+0 - 2. 400E+0 -1. 000E+0

2.4
0.0 +0. 000E+O +0. 000E+O +0. 000E+O
1.8 +1. 000E+0 +1. 800E+0 +1. 000E+0

Figure 299, SGN function examples

SIN

Returns the SIN of the argument where the argument is an angle expressed in radians. The
output format is double.

W TH TEMP1(N1) AS ANSVEER

(VALUES (0) ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—===—===

UNI ON ALL N1 RAN SI'N TAN
SELECT N1 + 10 e
FROM TEMP1 0 0.000 0.000 0.000
WHERE N1 < 80) 10 0.174 0.173 0.176
SELECT N1 20 0.349 0.342 0.363
. DEC(RADI ANS(N1) , 4, 3) AS RAN 30 0.523 0.500 0.577
' DEC(S| N(RADI ANS(N1)) , 4, 3) AS SIN 40 0.698 0.642 0. 839
' DEC{ TAN(RADI ANS(N1)) . 4. 3) AS TAN 50 0.872 0.766 1.191
FROM TEMP1, 60 1.047 0.866 1.732
70 1.221 0.939 2.747
80 1.396 0.984 5.671

Figure 300, SIN function example

SINH

Returns the hyperbolic sin for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

SMALLINT
Converts either anumber or avalid character value into a smallint value.
SELECT D1 ANSVER
, SMALLI NT(D]_) ——————————————————————————————=—===
, SMALLI NT(* +123") D1 2 3 4 5
USMALLINT(' -123') mmeee e e e oo

, SMALLINT(® 123 ') -

2.4 123 -123 123
FROM SCALAR; 0.0
1.8

2
0 123 -123 123
1 123 -123 123

Figure 301, SVMIALLINT function examples

SOUNDEX

Returns a 4-character code representing the sound of the words in the argument. Use the DIF-
FERENCE function to convert words to soundex values and then compare.

108 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT A NAME AS NL
, SOUNDEX(A. NAVE) AS S1
, B. NAME AS N2
, SOUNDEX(B. NAVE) AS S2
, DI FFERENCE
(A NAME, B. NAVE) AS DF

FROM STAFF A
, STAFF B

WHERE A ID= 10

AND B.ID > 150

AND B.1D < 250
ORDER BY DF DESC
, N2 ASC;

Figure 302, SOUNDEX function example

SOUNDEX Formula

Sanders S536
Sanders S536
Sanders S536
Sanders S536
Sanders S536
Sanders S536
Sanders S536
Sanders S536
Sanders S536

Snei der
Smith
Lundqui st
Dani el s
Mol i nare
Scoutten
Abr ahans
Ker m sch
Lu

a1
»
COORRFRENWD

There are several minor variations on the SOUNDEX algorithm. Below is one example:

e Thefirst letter of the name s left unchanged.

e ThelettersW and H are ignored.

e Thevowels A, E, 1,0,U,and Y are not coded, but are used as separators (see 5).

e Theremaining letters are coded as:

B,P,FV 1
C,GJKQSX,Z2 2
D, T 3
L 4
M, N 5
R 6

e Lettersthat follow letters with same code are ignored unless a separator (seeitem 3

above) precedes them.

The result of the above calculation is afour byte value. Thefirst byte is a character as defined
in step one. The remaining three bytes are digits as defined in steps two through four. Output
longer than four bytes is truncated If the output is not long enough, it is padded on the right
with zeros. The maximum number of distinct valuesis 8,918.

NOTE: The SOUNDEX function is something of an industry standard that was developed
several decades ago. Since that time, several other similar functions have been devel-
oped. You may want to investigate writing your own DB2 function to search for similar-

sounding names.

SPACE

Returns a string consisting of "n" blanks. The output format is varchar(4000).

W TH TEMP1(NL) AS
(VALUESN(ll) ,(2),(3))

SELECT
, SPACE(N1) AS S1
, LENGTH(SPACE(NL)) AS S2
,SPACE(N1) || ' X AS S3
FROM TEMPL;

Figure 303, SPACE function examples

Scalar Functions

S2 S3
1 X
2 X
3 X

109

Graeme Birchall ©

SQLCACHE_SNAPSHOT

DB2 maintains adynamic SQL statement cache. It also has severa fields that record usage of

the SQL statements in the cache. The following command can be used to access this data:
DB2 GET SNAPSHOT FOR DYNAM C SQL ON SAMPLE WRI TE TO FI LE

ANSVER - PART OF (ONE OF THE STATEMENTS I N THE SQ. CACHE)

Number of executions 8
Nurmber of conpil ations 1
Wor st preparation time (mns) 3
Best preparation tinme (ms) 3

Rows del eted = Not Col |l ected
Rows i nserted = Not Collected
Rows read = Not Col |l ected
Rows updat ed = Not Col |l ected
Rows written = Not Col |l ected
Statenent sorts = Not Collected
Total execution tine (sec.ns) = Not Col |l ected
Total user cpu tinme (sec.ms) = Not Col |l ected
Total systemcpu tine (sec.nms) = Not Col |l ected
St at enent text = select min(dept) fromstaff

Figure 304, GET SNAPSHOT command

The SQLCACHE_SNAPSHOT table function can also be used to obtain the same data - this
timein tabular format. One first has to run the above GET SNAPSHOT command. Then one
can run aguery like the following:

SELECT *

FROM TABLE(SQLCACHE_SNAPSHOT()) SS
WHERE ~ SS. NUM EXECUTI ONS <> O0;

Figure 305, SQLCACHE_SNAPSHOT function example

If one runs the RESET MONITOR command, the above execution and compilation counts
will be set to zero, but all other fields will be unaffected.

The following query can be used to list all the columns returned by this function:

SELECT ORDI NAL AS COLNO
, CHAR(PARVNAME, 18) AS COLNAME
, TYPENAMVE AS COLTYPE
, LENGTH
, SCALE

FROM SYSCAT. FUNCPARMS

WHERE FUNCSCHEMA = ’ SYSFUN

AND FUNCNAME = ’ SQLCACHE_SNAPSHOT’

ORDER BY COLNG,
Figure 306, List columns returned by SQLCACHE _SNAPSHOT

SQRT

Returns the square root of the input value, which can be any positive number. The output
format is double.

W TH TEMP1(N1) AS ANSVEER

(VALUES (0.5),(0.0) ============
,(1.0),(2.0)) N1 S1

SELECT DEC(N1, 4, 3) ASNL e e
, DEC(SQRT(N1), 4,3) AS S1 0.500 0.707
FROM TEMP1; 0. 000 0.000
1.000 1.000
2.000 1.414

Figure 307, SQRT function example

110 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SUBSTR

Returns part of astring. If the length is not provided, the output is from the start value to the
end of the string.

F SUBSTR (

Figure 308, SUBSTR function syntax

If the length is provided, and it is longer than the field length, a SQL error results. The fol-
lowing statement illustrates this. Note that in this example the DAT1 field has a"field length™
of 9 (i.e. the length of the longest input string).

string —— , start

L , length A : }

W TH TEMP1 (LEN, DAT1) AS ANSVEER

(VALUES (6,’ 123456789’) —==—=—=—=—===—=—==—=—==—=—=========
(4,7 12345%) LEN DAT1 LDAT SUBDAT
(16,7123)

) 6 123456789 9 123456

SELECT LEN 4 12345 5 1234

, DAT1 <error>
, LENGTH(DAT1) AS LDAT
, SUBSTR(DAT1, 1, LEN) AS SUBDAT

FROM TEMPL;

Figure 309, SUBSTR function - error because length parmtoo long

The best way to avoid the above problem isto simply write good code. If that sounds too
much like hard work, try the following SQL:

W TH TEMP1 (LEN, DAT1) AS ANSVER

(VALUES (6,’ 123456789’) —==—=—=—=—===—=—==—=—==—=—=========
(4,7 12345%) LEN DAT1 LDAT SUBDAT
(16,7123)

) 6 123456789 9 123456

SELECT LEN 4 12345 5 1234

, DAT1 16 123 3 123
, LENGTH(DAT1) AS LDAT
, SUBSTR(DAT1, 1, CASE
VWHEN LEN < LENGTH(DAT1) THEN LEN
ELSE LENGTH(DAT1)
END) AS SUBDAT
FROM TEMP1;

Figure 310, SUBSTR function - avoid error using CASE (see previous)

In the above SQL a CASE statement is used to compare the LEN value against the length of
the DAT1 field. If the former islarger, it isreplaced by the length of the latter.

If the input is varchar, and no length value is provided, the output is varchar. However, if the
length is provided, the output is of type char - with padded blanks (if needed):

SELECT NAME ANSVER
, LENGTH(NANE) AS LEN —————o——---o————————=—=———=—===
, SUBSTR(NAME, 5) AS S1 NAME LEN S1 L1 S2 L2
, LENGTH(SUBSTR(NAME, 5)) AS L1 ----meme mem mmee —e aee o
, SUBSTR(NAME, 5, 3) AS S2 Sander s 7 ers 3ers 3
, LENGTH(SUBSTR(NAME, 5, 3)) AS L2 Per nal 6 al 2 al 3
FROM STAFF Mar enghi 8 nghi 4 ngh 3
VHERE |D < 60; O Brien 7 ien 3ien 3
Hanes 5s 1ls 3

Figure 311, SUBSTR function - fixed length output if third parm. used

Scalar Functions 111

Graeme Birchall ©

TABLE

Thereisn't really a TABLE function, but thereis a TABLE phrase that returns aresult, one
row at atime, from either an external (e.g. user written) function, or from a nested table ex-
pression. The TABLE phrase (function) has to be used in the latter case whenever thereisa
reference in the nested table expression to arow that exists outside of the expression. An ex-
ample follows:

SELECT A ID ANSVER
, A. DEPT ——————————-————=—————=—====
, A. SALARY | D DEPT SALARY DEPTSAL
,B.DEPTSAL e eeee eeeeeeoe oo
FROM STAFF A 10 20 18357. 50 64286. 10
, TABLE 20 20 18171. 25 64286. 10
(SELECT B. DEPT 30 38 17506. 75 77285. 55
, SUM B. SALARY) AS DEPTSAL
FROM STAFF B

WHERE ~ B.DEPT = A DEPT
GROUP BY B. DEPT
)AS B

WHERE A ID < 40

ORDER BY A. 1D,

Figure 312, Full-select with external table reference

See page 32 for more details on using of the TABLE phrase in a nested table expression.

TABLE_NAME

Returns the base view or table name for a particular alias after all alias chains have been re-
solved. The output type is varchar(18). If the alias name is not found, the result is the input
values. There are two input parameters. The first, which is required, is the alias name. The
second, which is optional, is the alias schema. If the second parameter is not provided, the
default schemaiis used for the qudlifier.

CREATE ALI AS EMP1 FOR EMPLOYEE; ANSVER
CREATE ALI AS EMP2 FOR EMP1; ——======—===—============

SELECT TABSCHEMA et e oo

, TABNAVE GRAEME EMPLOYEE -1
, CARD

FROM SYSCAT. TABLES

VWHERE TABNAME = TABLE_NAME(' EMP2’' ,’ GRAEME) ;

Figure 313, TABLE_NAME function example

TABLE_SCHEMA

Returns the base view or table schema for a particular aias after al alias chains have been
resolved. The output type is char(8). If the alias name is not found, the result is the input val-
ues. There are two input parameters. Thefirst, which isrequired, is the alias name. The sec-
ond, which is optional, is the aias schema. If the second parameter is not provided, the de-
fault schemais used for the qualifier.

Resolving non-existent Objects

Dependent aliases are not dropped when a base table or view is removed. After the base table
or view drop, the TABLE_SCHEMA and TABLE_NAME functions continue to work fine
(see the 1st output line below). However, when the alias being checked does not exit, the
original input values (explicit or implied) are returned (see the 2nd output line below).

112 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

CREATE VI EWFRED1 (Cl1, C2, C3) ANSVEER
AS VALUES (1]_, "AAA', ' BBB) ; —=——==—=—=—=—=—=—=—=—=—=—=—=—=—=—=========
CREATE ALIAS FRED2 FOR FREDL: cmoZcmo ciToiiii...
CREATE ALI AS FRED3 FOR FREDZ; GRAEME FRED1
CRAEME XXXXX
DROP VI EW FREDL;
W TH TEMP1 (TAB_SCH, TAB_NVE) AS
(VALUES (TABLE_SCHEMA(' FRED3' , ' GRAEME'), TABLE_NAME(' FRED3')),
(TABLE_SCHEMA(* XXXXX') L TABLE_NANE(" X0000C ,* XXX)))
SELECT *
FROM TEMP1,

Figure 314, TABLE_SCHEMA and TABLE_NAME functions example
TAN
Returns the tangent of the argument where the argument is an angle expressed in radians.

TANH

Returns the hyperbolic tan for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

TIME

Convertsthe input into atime value.

TIMESTAMP
Converts the input(s) into atimestamp value.
Argument Options
e If only one argument is provided, it must be (one of):
A timestamp value.
A character representation of atimestamp (the microseconds are optional).
A 14 byte string in the form: YYYYMMDDHHMMSS.
« If both arguments are provided:
Thefirst must be a date, or a character representation of adate.

The second must be atime, or a character representation of atime.

SELECT TI MESTAMP(’ 1997-01-11-22. 44. 55. 000000’)
, TI MESTAMP(' 1997-01- 11-22. 44. 55. 000")
, TI MESTAVP(’ 1997-01-11-22. 44.55")
, TI MESTAMP(’ 19970111224455")
, TI MESTAVP(’ 1997-01- 11", 22. 44.55")
FROM STAFF
WHERE ID = 10;

Figure 315, TIMESTAMP function examples

TIMESTAMP_FORMAT

Takes an input string with the format: "YYYY-MM-DD HH:MM:SS" and convertsit into a
valid timestamp value. The VARCHAR_FORMAT function does the inverse.

Scalar Functions 113

Graeme Birchall ©

W TH TEMPL (TS1) AS
(VALUES (' 1999-12-31 23:59:59')
, (" 2002-10-30 11:22:33")

)
SELECT TS1
, TI MESTAMP_FORVAT(TS1, * YYYY- MV DD HH24: M : SS') AS TS2
FROM TEMP1
CRDER BY TS1; ANSVEER

1999-12-31 23:59:59 1999-12-31-23.59. 59. 000000
2002-10-30 11:22:33 2002-10-30-11.22.33. 000000

Figure 316, TIMESTAMP_FORMAT function example
Note that the only allowed formatting mask is the one shown.

TIMESTAMP_ISO

Returns atimestamp in the 1SO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the
IBM internal format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If the input is a date, zeros are inserted
in the time part. If the input is atime, the current date isinserted in the date part and zeros in
the microsecond section.

SELECT TML ANSVEER
, TI MESTAMP_I SO(TML) ——=—=—=—=—=——==—=—====
FROM SCALAR ™L 2

23:58: 58 2000-09-01-23. 58. 58. 000000
15:15: 15 2000- 09-01-15. 15. 15. 000000
00: 00: 00 2000-09- 01-00. 00. 00. 000000

Figure 317, TIMESTAMP_ISO function example

TIMESTAMPDIFF

Returns an integer value that is an estimate of the difference between two timestamp values.
Unfortunately, the estimate can sometimes be seriously out (see the example below), so this
function should be used with extreme care.

Arguments

There are two arguments. The first argument indicates what interval kind isto be returned.
Valid options are:

1 = Microseconds. 2 = Seconds. 4 = Minutes.
8 =Hours. 16 = Days. 32 = Weeks.
64 = Months. 128 = Quarters. 256 = Years.

The second argument is the result of one timestamp subtracted from another and then con-
verted to character.

114 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH TEMPL (TS1, TS2) AS
(VALUES (’ 1996- 03-01-00. 00. 01’ ,’ 1995- 03- 01- 00. 00. 00’)
, (’ 1996- 03- 01- 00. 00. 00’ , ’ 1995- 03- 01- 00. 00. 01’))
SELECT DF1
, TI MESTAVPDI FF(16, DF1) AS DI FF
, DAYS(TS1) - DAYS(TS2) AS DAYS
FROM (SELECT TSl
, TS2
, CHAR(TS1 - TS2) AS DF1
FROM (SELECT TI MESTAMP(TS1) AS TSl
, TI MESTAMP(TS2) AS TS2

FROM TEMP1
) AS TEMP2 ANSVER
)AS TEMP3; —————————————————————————————=—=—=
DF1 DI FF DAYS
00010000000001. 000000 365 366
00001130235959. 000000 360 366

Figure 318, TIMESTAMPDIFF function example

WARNING: The microsecond interval option for TIMESTAMPDIFF has a bug. Do not use.
The other interval types return estimates, not definitive differences, so should be used with
care. To get the difference between two timestamps in days, use the DAYS function as
shown above. It is more accurate.

Roll Your Own

The SQL will get the difference, in microseconds, between two timestamp values. It can be
used as an aternative to the above function.

WTH TEMP1 (TS1, TS2)

AS

(VALUES (' 1995-03-01-00. 12. 34. 000’ ,’ 1995- 03- 01- 00. 00. 00. 000’)
, (7 1995-03-01-00. 12. 00. 034", * 1995- 03- 01- 00. 00. 00. 000’))

SELECT MS1
, VB2
.MBL - MS2 AS DI FF
FROM (SELECT BI G NT(DAYS(TS1) * 86400000000
+ M DN GHT_SECONDS(TS1) * 1000000
+ M CROSECOND(TS1)) AS MSl1
, BI G NT(DAYS(TS2) * 86400000000
+ M DNI GHT_SECONDS(TS2) * 1000000

+ M CROSECOND(TS2)) AS MS2
FROM (SELECT TI MESTAMP(TS1) AS TS1

, TI MESTAMP(TS2) AS TS2

FROM TEMP1
) AS TEMP2
) AS TEMP3
ORDER BY 1; ANSVER
M. M2 DFF

62929699920034000 62929699200000000 720034000
62929699954000000 62929699200000000 754000000

Figure 319, Difference in microseconds between two timestamps

TRANSLATE

Convertsindividual charactersin either a character or graphic input string from one value to
another. It can also convert lower case data to upper case.

F TRANSLATE (—— string)
\— , to, from ‘ }

\— , Substitute J

Figure 320, TRANSLATE function syntax

Scalar Functions

115

Graeme Birchall ©

Usage Notes
¢ Theuseof theinput string alone generates upper case output.

¢ When "from" and "to" values are provided, each individual "from" character in the input
string is replaced by the corresponding "to" character (if there is one).

e If thereisno "to" character for aparticular "from" character, those characters in the input
string that match the "from" are set to blank (if there is no substitute value).

e A fourth, optional, single-character parameter can be provided that is the substitute char-
acter to be used for those "from" values having no "to" value.

* |f there are more "to" characters than "from" characters, the additional "to" characters are
ignored.

ANS. NOTES
SELECT '’ abcd’ ==> abcd No change

, TRANSLATE(' abcd’) ==> ABCD Make upper case

, TRANSLATE(' abcd’,’","a’) ==> bed 'a' =>" "’

, TRANSLATE(' abcd’ ,” A" ," A") abcd ' A =>" A

, TRANSLATE(" abcd’ ,” A" ,"a’) Abcd 'a’ =>" A

, TRANSLATE(' abcd’ ,” A", " ab’) Acd 'a =>A,"b ="
, TRANSLATE(' abcd’ ,” A", ab’,’ ") Acd’a =>A,’ b =

, TRANSLATE(" abcd’ ,” A", ab’,"z") Azcd 'a'=>'"A,’'b’ =" 7’
, TRANSLATE(' abcd’ ,” AB',’ a’) Abcd 'a’ =>" A

FROM STAFF
WHERE ID = 10;

Figure 321, TRANSLATE function examples
REPLACE vs. TRANSLATE - A Comparison

Both the REPLACE and the TRANSLATE functions alter the contents of input strings. They
differ in that the REPLA CE converts whole strings while the TRANSLATE converts multiple
sets of individual characters. Also, the "to" and "from" strings are back to front.

ANSVEER
SELECT C1 ==> ABCD
, REPLACE(C1,’ AB',’ XY") ==> XYCD
, REPLACE(CL, ' BA', ' XY") ==> ABCD
, TRANSLATE(C1, ’ XY’ ,’ AB’) XYCD
, TRANSLATE(C1, ’ XY’ ," BA") YXCD

FROM SCALAR
VWHERE Cl1 = ' ABCD ;

Figure 322, REPLACE vs. TRANSLATE

TRUNC or TRUNCATE

Truncates (not rounds) the rightmost digits of an input number (1st argument). If the second
argument is positive, it truncates to the right of the decimal place. If the second value is nega-
tive, it truncates to the left. A second value of zero truncates to integer. The input and output
types will equal. To round instead of truncate, use the ROUND function.

116 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

ANSVER
DI POs2 PCSL ZERO NEGL NE®@

WTH TEMPL(D1) AS 123. 400 123.400 123.400 123.000 120. 000 100. 000
(VALUES (123. 400) 23.450 23.440 23.400 23.000 20.000 ~ 0.000
(" 23 450) 3.456 3.450 3.400 3.000 0.000 0.000

(3. 456) 0.056 0.050 0.000 0.000 0.000 0.000

) . 056))

SELECT D1
, DEC(TRUNC(D1, +2) , 6, 3) AS POS2
. DEC{ TRUNC(D1, +1) , 6, 3) AS POSL
, DEC({ TRUNC(D1, +0) , 6, 3) AS ZERO
, DEC{ TRUNC(DL, - 1), 6, 3) AS NEGL
, DEC(TRUNC(DL, - 2), 6, 3) AS NEG

FROM TEMPL

ORDER BY 1 DESC

Figure 323, TRUNCATE function examples

TYPE_ID
Returns the internal type identifier of he dynamic data type of the expression.

TYPE_NAME
Returns the unqualified name of the dynamic data type of the expression.

TYPE_SECHEMA
Returns the schema name of the dynamic data type of the expression.

UCASE or UPPER

Coverts amixed or lower-case string to upper case. The output is the same data type and
length as the input.

SELECT NAME ANSVER
, LCASE(NANE) AS LNAVE ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=====
, UCASE(NAME) AS UNAME NANME LNAME UNAMVE
FROM ' STAFF Lo oL Ll
VHERE | D < 30; Sanders sanders SANDERS

Per nal per nal PERNAL
Figure 324, UCASE function example

VALUE
Same as COALESCE.

VARCHAR

Convertsthe input (1st argument) to a varchar data type. The output length (2nd argument) is
optional. Trailing blanks are not removed.

SELECT C1 ANSVER
, LENGTH(Cl) AS L1 ——————————————————————=—=
, VARCHAR(C1) AS V2 C1 L1 V2 L2 V3
'LENGTH(VARCHAR(C1)) AS L2 cmeeee o2 coeooo o 21
, VARCHAR(C1, 4) AS V3 ABCDEF 6 ABCDEF 6 ABCD
FROM SCALAR; ABCD 6 ABCD 6 ABCD
AB 6 AB 6 AB

Figure 325, VARCHAR function examples

Scalar Functions 117

Graeme Birchall ©

VARCHAR_FORMAT

Converts atimestamp value into a string with the format: "YYYY-MM-DD HH:MM:SS".
The TIMESTAMP_FORMAT function does the inverse.
W TH TEMP1 (TS1) AS

(VALUES (TI MESTAMP(’ 1999- 12- 31- 23.59. 59"))
, (TI MESTAMP(’ 2002- 10- 30- 11. 22. 33"))

)
SELECT TS1
, VARCHAR_FORMAT(TS1, ' YYYY- MV DD HH24: M : SS') AS TS2

FROM TEMP1
CORDER BY TS1,; ANSVER

1999-12-31-23. 59. 59. 000000 1999-12-31 23:59: 59
2002- 10- 30-11. 22. 33. 000000 2002-10-30 11:22:33

Figure 326, VARCHAR_FORMAT function example
Note that the only allowed formatting mask is the one shown.

VARGRAPHIC

Convertsthe input (1st argument) to a vargraphic data type. The output length (2nd argument)
isoptional.

VEBLOB_CP_LARGE

Thisis an undocumented function that IBM has included.

VEBLOB_CP_LARGE
Thisis an undocumented function that IBM has included.

WEEK

Returns avalue in the range 1 to 53 or 54 that represents the week of the year, where aweek
begins on a Sunday, or on the first day of the year. Valid input types are a date, a timestamp,
or an equivalent character value. The output is of type integer.

SELECT WEEK(DATE(’ 2000- 01-01’)) AS W ANSVER
, \EEK(DATE(’ 2000- 01- 02")) AS W2 N ——————
. \EEK(DATE(’ 2001- 01- 02")) AS W3 W W W W W
. \EEK(DATE(’ 2000- 12-31')) AS W ce e e e -
. \EEK(DATE(’ 2040-12-31')) AS W 1 2 1 54 53

FROM SYSI BM SYSDUMMY1;
Figure 327, WEEK function examples

Both the first and last week of the year may be partial weeks. Likewise, from one year to the
next, a particular day will often be in adifferent week (see page 263).

WEEK_ISO

Returns an integer value, in the range 1 to 53, that isthe "ISO" week number. An 1SO week
differsfrom an ordinary week in that it begins on aMonday and it neither ends nor begins at
the exact end of the year. Instead, week 1 isthe first week of the year to contain a Thursday.
Therefore, it is possible for up to three days at the beginning of the year to appear in the last
week of the previous year. As with ordinary weeks, not all 1SO weeks contain seven days.

118 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH
TEMPL (N) AS
(VALUES (0)
UNI ON ALL
SELECT N+1
FROM TEMP1
WHERE N < 10),
TEMP2 (DT2) AS
(SELECT DATE(’ 1998-12-27") + Y.N YEARS

+ D. N DAYS
FROM TEMP1 Y
, TEMPL D
WHERE Y.N IN (0, 2))
SELECT CHAR(DT2, | SO) DTE
, SUBSTR(DAYNAME(DT2) , 1,3) DY
, WEEK(DT2) VK
, DAYOFVEEK(DT2) DY
, VEEK_| SO(DT2) W
, DAYOFVEEK | SO(DT2) DI
FROM TEMP2
ORDER BY 1;

Figure 328, WEEK _1SO function example

YEAR

1998-12-27
1998-12- 28
1998-12-29
1998-12-30
1998-12-31
1999-01-01
1999-01-02
1999-01-03
1999-01- 04
1999- 01- 05
1999-01- 06
2000- 12- 27
2000-12- 28
2000- 12- 29
2000-12- 30
2000-12-31
2001-01-01
2001-01-02
2001-01-03
2001-01-04
2001-01-05
2001-01-06

Thu
Fri
Sat
Sun
Mon
Tue
Wed
Thu
Fri
Sat

~NOOUORWNREP~NOUORDRWNRERP~NOORAWNE

[$)]
N
OURAWNRPNOUORWWNRP~NOUORAWNEN

Returns a four-digit year value in the range 0001 to 9999 that represents the year (including
the century). The input is a date or timestamp (or equivalent) value. The output is integer.

SELECT DT1
, YEAR(DT1) AS YR
, VEEK(DT1) AS WK
FROM SCALAR

Figure 329, YEAR and WEEK functions example

Scalar Functions

04/ 22/ 1996
08/ 15/ 1996
01/01/ 0001

1996
1996

1

119

DB2 UDB V8.1 Cookbook ©

Order By, Group By, and Having

Introduction

The GROUP BY statement is used to combine multiple rowsinto one. The HAVING expres-
sion is where one can select which of the combined rows are to be retrieved. In this sense, the
HAVING and the WHERE expressions are very similar. The ORDER BY statement is used
to sequence the rows in the final output.

Order By

’ ASC —
F ORDER BY column name [’ }
DESC

column#

expression —
Figure 330, ORDER BY syntax
The ORDER BY statement can only be applied to the final result set of the SQL statement.

Unlike the GROUP BY, it can not be used on any intermediate result set (e.g. a sub-query or
a nested-table expression). Nor can it be used in aview definition.

Sample Data
CREATE VI EW SEQ DATA(COL1, COL2) AS VALUES
("ab’,'xy’),("AB ,'xy’),("ac’,’ XY),("AB ," XY), (" Ab’,'12");
Figure 331, ORDER BY sample data definition

Order by Examples

SELECT CcoLl ANSVER
y CO—Z ===
FROM SEQ DATA COL1 caL2
ORDER BY COL1 ASC e e

, COLZ; ab xy

ac XY

Ab 12

AB Xy

AB XY

Figure 332, Smple ORDER BY

Observe how in the above example al of the lower case data comes before the upper case
data. Usethe TRANSLATE function to display the data in case-independent order:

SELECT CO.1 ANSVER
y CO_Z =========C
FROM SEQ DATA CcCo.1 CO.2
ORDER BY TRANSLATE(COL1) ASC e=ee ----

, TRANSLATE(COL2) ASC Ab 12

ab xy

AB XY

AB xy

ac XY

Figure 333, Case insensitive ORDER BY

Order By, Group By, and Having 121

Graeme Birchall ©

One does not have to specify the column in the ORDER BY in the select list though, to the
end-user, the data may seem to be random order if one leaves it out:

SELECT COL2 ANSVEER
FROM SEQ DATA ======
ORDER BY COLI coL2
, COL2;
Xy
XY
12
Xy
XY

Figure 334, ORDER BY on not-displayed column

In the next example, the dataiis (primarily) sorted in descending sequence, based on the sec-
ond byte of the first column:

SELECT COLl ANSVEER
y CO—Z —_——_—————=——=
FROM SEQ DATA CcOoL1 COL2
CRDER BY SUBSTR(COL1,2) DESC eeee aees
, CO_Z ac XY
1 AB Xy
AB XY
Ab 12
ab xy

Figure 335, ORDER BY second byte of first column

If acharacter column is defined FOR BIT DATA, the dataisreturned in internal ASCII se-
guence, as opposed to the standard collating sequence where'a <’A’<’b’<'B’. In ASCII se-
guence all upper case characters come before al lower case characters. In the following ex-
ample, the HEX function is used to display ordinary character datain bit-data order:

SELECT COL1 ANSVEER
, COL2 COL1 HEX1 COL2 HEX2
JHEX(COL2) AS HEX2 Lol iD oo

FROM SEQ DATA AB 4142 XY 5859

ORDER BY HEX(COL1) AB 4142 xy 7879
, HEX(COL2) Ab 4162 12 3132

Figure 336, ORDER BY in hit-data sequence

Arguably, either the BLOB or CLOB functions should be used (instead of HEX) to get the
datain ASCII sequence. However, when these two were tested (in DB2BATCH) they caused
the ORDER BY tofail.

Notes

e Specifying the same field multipletimesin an ORDER BY list is alowed, but silly. Only
the first specification of the field will have any impact on the data output order.

¢ If the ORDER BY column list does not uniquely identify each row, those rows with du-
plicate values will come out in random order. Thisis almost always the wrong thing to do
when the dataiis being displayed to an end-user.

¢ Usethe TRANSLATE function to order data regardless of case. Note that this trick may
not work consistently with some European character sets.

¢ NULL values aways sort high.

122 Order By

DB2 UDB V8.1 Cookbook ©

Group By and Having

The GROUP BY statement is used to group individual rowsinto combined sets based on the
valuein one, or more, columns. The GROUPING SETS clause is used to define multiplein-
dependent GROUP BY clausesin one query. The ROLLUP and CUBE clauses are short-
hand forms of the GROUPING SETS statement.

F GROUP BY £ expression ‘ }
— GROUPING SETS —(expression ‘) J
ROLLUP stmt (see below)—|
grand-total CUBE stmt (see below) —
T L
— ROLLUP —(expression

)
(i éxpression l) J

- CUBE —(expression

)
(i éxpression l) J

—()

search-condition(s) }

F HAVING

Figure 337, GROUP BY syntax

GROUP BY Sample Data

ORDER BY 1, 2, 3, 4;

CREATE VI EW EMPLOYEE_VI EW AS ANSVER
SELECT SUBSTR(WORKDEPT, 1, 1) AS D1 ==================
, WORKDEPT AS DEPT D1 DEPT SEX SALARY
, SEX AS SEX - e e oo
, | NTEGER(SALARY) AS SALARY A A00 F 52750
FROM EMPLOYEE A A0 M 29250
WHERE WORKDEPT < ’ D20’ ; A A00 M 46500
COW T, B B01 M 41250
C 001 F 23800
CcC C1 F 28420
C 001 F 38250
D D11 F 21340
SELECT * D D11 F 22250
FROM EMPLOYEE_VI EW D D11 F 29840
D M
D M
D M
D M
D M
D M

Figure 338, GROUP BY Sample Data

Simple GROUP BY Statements

A simple GROUP BY is used to combine individual rows into a distinct set of summary rows.

Order By, Group By, and Having 123

Graeme Birchall ©

Rules and Restrictions

¢ There can only be one GROUP BY per SELECT. Multiple select statementsin the same
guery can each have their own GROUPBY .

¢ Everyfieldinthe SELECT list must either be specified in the GROUP BY, or must have
a column function applied against it.

e Theresult of asimple GROUPBY (i.e. with no GROUPING SETS, ROLLUP or CUBE
clause) is always a distinct set of rows, where the unique identifier is whatever fields
were grouped on.

¢ Thereisno guarantee that the rows resulting from a GROUP BY will come back in any
particular order, unless an ORDER BY isalso specified.

* Variable length character fields with differing numbers on trailing blanks are treated as
equal in the GROUP. The number of trailing blanks, if any, in the result is unpredictable.

e When grouping, al null valuesin the GROUP BY fields are considered equal .
Sample Queries

In thisfirst query we group our sample data by the first three fields in the view:

SELECT D1, DEPT, SEX ANSVER
, SUN[SALARY) AS SALARY ——————————————————=—=—=—=—==
, SMALLI NT(COUNT(*)) AS #ROWS D1 DEPT SEX SALARY #ROWS
FROM EMPLOYEE VIEW e eee eoe oeoeo e oo
VWHERE DEPT <> ' ABC A AO0 F 52750 1
GROUP BY D1, DEPT, SEX A A0 M 75750 2
HAVI NG DEPT > A0 B B0l M 41250 1
AND (SUM SALARY) > 100 C C01 F 90470 3
R M N(SALARY) > 10 D D11 F 73430 3
OR COUNT(*) <> 22) D D11 M 148670 6

ORDER BY D1, DEPT, SEX;
Figure 339, Smple GROUP BY

Thereis no need to have the afield in the GROUP BY inthe SELECT list, but the answer
really doesn't make much sense if one does this:

SELECT SEX ANSVER
s SUN[SALARY) AS SALARY ettt]
, SMALLI NT(COUNT(*)) AS #ROWS SEX SALARY #RONG6
FROM EMPLOYEE VIEW eee eemaa e oo -
VHERE SEXIN ("F ,"M) F 52750 1
GROUP BY DEPT F 90470 3
, SEX F 73430 3
ORDER BY SEX; M 75750 2
M 41250 1
M 148670 6

Figure 340, GROUP BY on non-displayed field

One can aso do aGROUP BY on a derived field, which may, or may not be, in the statement
SELECT list. Thisis an amazingly stupid thing to do:

SELECT SUM SALARY) AS SALARY ANSVER

, SVALLI NT(COUNT(*)) AS #RONS e
FROM EMPLOYEE_VI EW SALARY #RONS
WHERE DL <>'X i
GROUP BY SUBSTR(DEPT, 3, 1) 128500 3
HAVING COUNT(*) <> 99; 353820 13

Figure 341, GROUP BY on derived field, not shown

124 Group By and Having

DB2 UDB V8.1 Cookbook ©

One can not refer to the name of a derived columnin a GROUP BY statement. Instead, one
has to repeat the actual derivation code. One can however refer to the new column namein an
ORDERBY:

SELECT SUBSTR(DEPT, 3, 1) AS WPART ANSVER
, SUM SALARY) AS SALARY ——=—=—=—=—=—=—=—=—==—=—=====
, SMALLI NT(COUNT(*)) AS #RONS WPART SALARY #ROWS
FROM EMPLOYEE VIEW eeeee eeeoe oo
GROUP BY SUBSTR(DEPT, 3, 1) 1 353820 13
ORDER BY WPART DESC; 0 128500 3

Figure 342, GROUP BY on derived field, shown

GROUPING SETS Statement

The GROUPING SETS statement enable one to get multiple GROUP BY result setsfrom a
single statement. It isimportant to understand the difference between nested (i.e. in secondary
parenthesis), and non-nested GROUPING SETS sub-phrases:

e A nested list of columns works as asimple GROUP BY.

¢ A non-nested list of columns works as separate simple GROUP BY statements, which are
then combined in animplied UNION ALL:

GROUP BY GROUPI NG SETS ((A, B,Q) is equivalent to GROUP BY A
, B
,C

GROUP BY GROUPI NG SETS (A B, O is equivalent to GROUP BY A
UNI ON ALL
GROUP BY B
UNI ON ALL
GROUP BY C

GROUP BY GROUPI NG SETS (A, (B, Q) is equivalent to GROUP BY A
UNI ON ALL

GROUP BY B

,BY C

Figure 343, GROUPING SETSin parenthesis vs. not

Multiple GROUPING SETS in the same GROUP BY are combined together asif they were
simplefieldsin a GROUP BY list:

GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A

, GROUPI NG SETS (B) . B
, GROUPI NG SETS (Q) ,C
GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A
, GROUPI NG SETS ((B, 0)) . B
,C
GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A
, GROUPI NG SETS (B, C) . B
UNI ON ALL
GROUP BY A
,C
Figure 344, Multiple GROUPING SETS
One can mix simple expressions and GROUPING SETS in the same GROUP BY:
GROUP BY A is equivalent to GROUP BY A
, GROUPI NG SETS ((B, Q) ,B
,C

Figure 345, Smple GROUP BY expression and GROUPING SETS combined

Order By, Group By, and Having 125

Graeme Birchall ©

Repeating the same field in two parts of the GROUP BY will result in different actions de-
pending on the nature of the repetition. The second field reference isignored if a standard
GROUPBY isbeing made, and used if multiple GROUP BY statements are implied:

GROUP BY A is equivalent to GROUP BY A
, B , B
, GROUPI NG SETS ((B, Q) ,C
GROUP BY A is equivalent to GROUP BY A
, B , B
, GROUPI NG SETS (B, © ,C
UNI ON ALL
GROUP BY A
, B
GROUP BY A is equivalent to GROUP BY A
, B , B
, C , C
, GROUPI NG SETS (B, © UNI ON ALL
GROUP BY A
, B
,C

Figure 346, Mixing simple GROUP BY expressions and GROUPING SETS

A single GROUPING SETS statement can contain multiple sets of implied GROUP BY
phrases (obviously). These are combined using implied UNION ALL statements:

GROUP BY GROUPI NG SETS ((A, B, C) is equivalent to GROUP BY
(A B
(9)

Om>

UNI ON ALL
GROUP BY A
B
UNI ON ALL
GROUP BY C

GROUP BY GROUPI NG SETS ((A) is equivalent to GROUP BY A
, (B, 0 UNI ON ALL
(A GROUP BY B
LA ,C
. ((9)) UNI ON ALL
GROUP BY A
UNI ON ALL
GROUP BY A
UNI ON ALL
GROUP BY C

Figure 347, GROUPING SETSwith multiple components

The null-field list *()" can be used to get agrand total. Thisis equivalent to not having the
GROUPBY at al.

GROUP BY GROUPI NG SETS ((A B, Q) is equivalent to GROUP BY A
, (A, B) , B
o
(

>>

,C

UNI ON ALL
GROUP BY A
, B

is equivalent to UNI ON ALL
GROUP BY A

UNI ON ALL

ROLLUP(A, B, O grand-totl

Figure 348, GROUPING SET with multiple components, using grand-total

The above GROUPING SETS statement is equivalent to a ROLLUP(A,B,C), while the next
is equivalent to a CUBE(A,B,C):

~
~

126 Group By and Having

DB2 UDB V8.1 Cookbook ©

o) is equivalent to GROUP BY

Om>

\ UNI ON ALL
) GROUP BY A
B) B
) UNI ON ALL
)) GROUP BY A

,C
UNI ON ALL

GROUP BY B

is equivalent to , C
UNI ON ALL

GROUP BY A
UNI ON ALL

CUBE(A, B, O GROUP BY B
UNI ON ALL

GROUP BY C
UNI ON ALL
grand-totl

GROUP BY GROUPI NG SETS (

Figure 349, GROUPING SET with multiple components, using grand-total
SQL Examples

Thisfirst example has two GROUPING SETS. Because the second is in nested parenthesis,
the result is the same as a simple three-field group by:

SELECT D1 ANSVEER
, DEPT S =—=====
, SEX D1 DEPT SEX SAL #R DF WF SF
, SUM SALARY) AS SAL Ce e e e ce e e -
. SMALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O
, GROUPI NG(D1) AS F1 A A00 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD B BO01 M 41250 1 0 O O
, GROUPI NG(SEX) AS FS C 001 F 90470 3 0 O O

FROM EMPLOYEE_VI EW D D11 F 73430 3 0 O O

GROUP BY GROUPI NG SETS (D1) D D11 M 148670 6 0 O O

, GROUPI NG SETS ((DEPT, SEX))
ORDER BY D1
, DEPT
» SEX;
Figure 350, Multiple GROUPING SETS, making one GROUP BY

NOTE: The GROUPING(field-name) column function is used in these examples to identify
what rows come from which particular GROUPING SET. A value of 1 indicates that the
corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

In the next query, the second GROUPING SET is not in nested-parenthesis. The query is
therefore equivalent to GROUP BY D1, DEPT UNION ALL GROUPBY D1, SEX:

SELECT D1 ANSVER
, DEPT —==——=———=—=—=—=—=—=—=——-=—-—=—=———=—=—=—=====
, SEX D1 DEPT SEX SAL #R F1 FD FS
| SUM SALARY) AS SAL B S
, SMALLI NT(COUNT(*)) AS #R A AO0O - 128500 3 0 0 1
, GROUPI NG(D1) AS F1 A - F 52750 1 0 1 O
, GROUPI NG(DEPT) AS FD A - M 75750 2 0 1 O
, GROUPI NG(SEX) AS FS B BO1 - 41250 1 0 O 1
FROM EMPLOYEE_VI EW B - M 41250 1 0 1 O
GROUP BY GROUPI NG SETS (D1) c (o1 - 90470 3 0 0 1
, GROUPI NG SETS (DEPT, SEX) c - F 90470 3 0 1 O
CRDER BY D1 D D11 - 222100 9 0 0 1
, DEPT D - F 73430 3 0 1 O
, SEX; D - M 148670 6 O 1 O

Figure 351, Multiple GROUPING SETS, making two GROUP BY results

Order By, Group By, and Having 127

Graeme Birchall ©

It is generally unwise to repeat the same field in both ordinary GROUP BY and GROUPING
SETS statements, because the result is often rather hard to understand. To illustrate, the fol-
lowing two queries differ only in their use of nested-parenthesis. Both of them repeat the
DEPT field:

* Inthefirst, the repetition isignored, because what is created is an ordinary GROUP BY
on al three fields.

* Inthe second, repetition isimportant, because two GROUP BY statements are implicitly
generated. Thefirstison D1 and DEPT. The second is on D1, DEPT, and SEX.

SELECT D1 ANSVEER
, DEPT S o-----——————-—-—————-=—==—===
, SEX D1 DEPT SEX SAL #R F1 FD FS
, SUM SALARY) AS SAL -
, SMALLI NT(COUNT(*)) AS #R A AO0 F 52750 1 0 O O
, GROUPI NG D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD B BO1 M 41250 1 0 O O
, GROUPI NH SEX) AS FS C C01 F 90470 3 0 0 O
FROM EMPLOYEE_VI EW D D11 F 73430 3 0 0O O
GROUP BY D1 D D11 W™ 148670 6 0O O O
, DEPT
, GROUPI NG SETS ((DEPT, SEX))
ORDER BY D1
, DEPT
, SEX;
Figure 352, Repeated field essentially ignored
SELECT D1 ANSVEER
, DEPT S o-----——————-—-—————-=—==—===
, SEX D1 DEPT SEX SAL #R F1 FD FS
, SUM SALARY) AS SAL -
, SMALLI NT(COUNT(*)) AS #R A AO0 F 52750 1 0 O O
, GROUPI NE D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD A A00 - 128500 3 0 0 1
, GROUPI NH SEX) AS FS B B0l W™ 41250 1 0 O O
FROM EMPLOYEE_VI EW B BO1 - 41250 1 0 O 1
GROUP BY D1 C C01 F 90470 3 0 0 O
, DEPT c Q1 - 90470 3 0 0 1
, GROUPI NG SETS (DEPT, SEX) D D11 F 73430 3 0 0 O
ORDER BY D1 D D11 M 148670 6 0 O O
, DEPT D D11 - 222100 9 0 0 1
, SEX;
Figure 353, Repeated field impacts query result
The above two queries can be rewritten as follows:
GROUP BY D1 is equivalent to CROUP BY D1
, DEPT , DEPT
, GROUPI NG SETS ((DEPT, SEX)) SEX
GROUP BY D1 is equivalent to GROUP BY D1
, DEPT , DEPT
, GROUPI NG SETS (DEPT, SEX) SEX
UNI ON ALL
GROUP BY D1
, DEPT
, DEPT

Figure 354, Repeated field impacts query result

NOTE: Repetitions of the same field in a GROUP BY (as is done above) are ignored dur-
ing query processing. Therefore GROUP BY D1, DEPT, DEPT, SEX is the same as
GROUP BY D1, DEPT, SEX.

128 Group By and Having

DB2 UDB V8.1 Cookbook ©

ROLLUP Statement

A ROLLUP expression displays sub-totals for the specified fields. Thisis equivalent to doing
the original GROUP BY, and aso doing more groupings on sets of the left-most columns.

GROUP BY ROLLUP(A, B, O) ===> GROUP BY GROUPI NG SETS((A, B, C)
(A B)
(A
()

GROUP BY ROLLUP(C, B) —==> GROUP BY GROUPI NG SETS(ECj B)
,(C
()

GROUP BY ROLLUP(A) —==> GROUP BY GROUPI NG SETS(EA%

~

Figure 355, ROLLUP vs. GROUPING SETS
Imagine that we wanted to GROUP BY/, but not ROLLUP onefield in alist of fields. To do
this, we simply combine the field to be removed with the next more granular field:

GROUP BY ROLLUP(A, (B, C)) ===> GROUP BY GROUPI NG SETS((A, B, O
A

)

~—

(
 (
Figure 356, ROLLUP vs. GROUPING SETS

Multiple ROLLUP statements in the same GROUP BY act independently of each other:

GROUP BY ROLLUP(A) ===> GROUP BY GROUPI NG SETS((A, B, C)
, ROLLUP(B, ©) (A B)
(A
, (B, C
B

1 (B)
()
Figure 357, ROLLUP vs. GROUPING SETS

SQL Examples

Hereisastandard GROUP BY that gets no sub-totals:

SELECT DEPT ANSVER
, SUN[SALARY) AS SALARY ———————————=——=—=—=—====
, SMALLI NT(COUNT(*)) AS #ROWS DEPT SALARY #ROWS FD
, GROUPI NG(DEPT) AS FD e e el
FROM EMPLOYEE_VI EW A0O0 128500 30
GROUP BY DEPT BO1 41250 10
ORDER BY DEPT; Cco1 90470 30
D11 222100 90

Figure 358, Smple GROUP BY

Imagine that we wanted to also get a grand total for the above. Below is an example of using
the ROLLUP statement to do this:

SELECT DEPT ANSVER
, SUN[SALARY) AS SALARY ———————————=——=—=—=—====
, SMALLI NT(COUNT(*)) AS #ROWS DEPT SALARY #ROWS FD
, GROUPI NG(DEPT) AS FD e e el
FROM EMPLOYEE_VI EW A0O0 128500 3 0
GROUP BY ROLLUP(DEPT) BO1 41250 1 0
ORDER BY DEPT; Cco1 90470 3 0
D11 222100 9 O
- 482320 16 1

Figure 359, GROUP BY with ROLLUP

NOTE: The GROUPING(field-name) function that is selected in the above example re-
turns a one when the output row is a summary row, else it returns a zero.

Order By, Group By, and Having 129

Graeme Birchall ©

Alternatively, we could do things the old-fashioned way and use a UNION ALL to combine
the origindl GROUP BY with an al-row summary:

SELECT DEPT ANSVEER
, SUM SALARY) AS SALARY —==—==—==—==—==—=========
' SMALLI NT(COUNT(*)) AS #ROAB DEPT SALARY #ROAS FD
. GROUPI NG{ DEPT) AS FD mmee e il
FROM EMPLOYEE_VI EW A00 128500 3 0
GROUP BY DEPT BO1 41250 1 0
UNI ON ALL Cco1 90470 3 0
SELECT CAST(NULL AS CHAR(3)) AS DEPT D11 222100 9 O
, SUM SALARY) AS SALARY - 482320 16 1

, SMALLI NT(COUNT(*)) AS #ROWS
, CAST(1 AS | NTEGER) AS FD
FROM EMPLOYEE_VI EW
ORDER BY DEPT;

Figure 360, ROLLUP done the old-fashioned way

Specifying afield both in the original GROUP BY, and in aROLLUP list simply resultsin
every datarow being returned twice. In other words, the result is garbage:

SELECT DEPT ANSVER
s SU'V(SALARY) AS SALARY ————————————————=—=—==
, SMALLI NT(COUNT(*)) AS #RONB DEPT SALARY #ROWSs FD
, GROUPI NG(DEPT) AS FD = me emmme aiaeo -
FROM EMPLOYEE VI EW A00 128500 3 0
GROUP BY DEPT A00 128500 3 0
, ROLLUP(DEPT) BO1 41250 1 0
ORDER BY DEPT; BO1 41250 1 0
Cco1 90470 3 0
01 90470 3 0
D11 222100 9 0
D11 222100 9 O

Figure 361, Repeating a field in GROUP BY and ROLLUP (error)

Below is a graphic representation of why the data rows were repeated above. Observe that
two GROUP BY statements were, in effect, generated:

GROUP BY DEPT => GROUP BY DEPT => GROUP BY DEPT
, ROLLUP(DEPT) , GROUPI NG SETS((DEPT) UNI ON ALL
. 0) GROUP BY DEPT

()
Figure 362, Repeating a field, explanation

In the next example the GROUP BY,, is on two fields, with the second a so being rolled up:

SELECT DEPT ANSVER
, SEX s —_——————————————

, SUM SALARY) AS SALARY DEPT SEX SALARY #ROWS FD FS

,SMALLI NT(COUNT(*)) AS #ROMNS ~ -==- —== —mmeeo mmeeo o oo

, GROUPI NG(DEPT) AS FD AO0 F 52750 1.0 0

, GROUPI NG(SEX) AS FS AO0 M 75750 2 00

FROM EMPLOYEE_VI EW A00 - 128500 3 0 1
GROUP BY DEPT BO1 M 41250 1 00
, ROLLUP(SEX) BO1 - 41250 1 0 1

ORDER BY DEPT 1 F 90470 3 00
, SEX; @1l - 90470 3 0 1

DI1 F 73430 3 00

DI1 M 148670 6 0 0

DI1 - 222100 9 0 1

Figure 363, GROUP BY on 1st field, ROLLUP on 2nd

The next example does a ROLLUP on both the DEPT and SEX fields, which means that we
will get rows for the following:

¢ Thework-department and sex field combined (i.e. the original raw GROUP BY).

130 Group By and Having

DB2 UDB V8.1 Cookbook ©

e A summary for al sexeswithin an individual work-department.

A summary for al work-departments (i.e. a grand-total).

SELECT DEPT ANSVEER
, SEX —=—=—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=========
, SUM SALARY) AS SALARY DEPT SEX SALARY #ROWS FD FS
" SMALLI NT(COUNT(*)) AS #ROWS A S
, GROUPI NG DEPT) AS FD A0OO F 52750 1 0 O
, GROUPI NG SEX) AS FS AO0O M 75750 2 0 0
FROM EMPLOYEE_VI EW AOO - 128500 3 0 1
GROUP BY ROLLUP(DEPT BO1 M 41250 1 0 O
, SEX) BO1 - 41250 1 0 1
ORDER BY DEPT 01 F 90470 3 0 0
, SEX; a1 - 90470 3 0 1
D11 F 73430 3 0 O
D11 M 148670 6 0 O
D11 - 222100 9 0 1
- - 482320 16 1 1

Figure 364, ROLLUP on DEPT, then SEX

In the next example we have reversed the ordering of fields in the ROLLUP statement. To
make things easier to read, we have also atered the ORDER BY sequence. Now get an indi-
vidual row for each sex and work-department value, plus a summary row for each sex:, plus a
grand-total row:

SELECT SEX ANSVEER
, DEPT —=—=—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=========
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWS FD FS
" SMALL| NT(COUNT(*)) AS #ROWS S Lo LT S
, GROUPI NG(DEPT) AS FD F AO0O0 52750 1 0 O
, GROUPI NG(SEX) AS FS F C01 90470 3 0 0
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY ROLLUP(SEX F - 216650 7 1 0
, DEPT) M AOO 75750 2 0 0
CRDER BY SEX M BO1 41250 1 0 O
, DEPT; M D11 148670 6 0 O
M - 265670 9 1 0
- - 482320 16 1 1

Figure 365, ROLLUP on SEX, then DEPT

The next statement is the same as the prior, but it uses the logically equivalent GROUPING
SETS syntax:

SELECT SEX ANSVEER
, DEPT S ——-—-———————=—=—=—==—====
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWS FD FS
. SVALLI NT(COUNT(*)) AS #ROS e e e e ae -
, GROUPI NG(DEPT) AS FD F A0O 52750 1 0 O
, GROUPI NG(SEX) AS FS F o1 90470 3 0 O
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY GROUPI NG SETS ((SEX, DEPT) F - 216650 7 1 0
, (SEX) M AOO 75750 2 0 0
 0) M B0l 41250 1 0 0
CRDER BY SEX M D11 148670 6 0 O
, DEPT; M - 265670 9 1 O
- - 482320 16 1 1

Figure 366, ROLLUP on SEX, then DEPT
The next example has two independent rollups. These work as follows:
¢ Thefirst generates a summary row for each sex.

e The second generates a summary row for each work-department.

Order By, Group By, and Having 131

Graeme Birchall ©

e Thetwo together make a (single) combined summary row of all matching data:

This query isthe same asa UNION of the two individual rollups, but it has the advantage of
being done in asingle pass of the data. The result is the same as a CUBE of the two fields:

SELECT SEX ANSVEER
, DEPT —=—=—==—=—=—=—=——=—=—=—=—=—==—=—=—========
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWS FD FS
"SMALLI NT(COUNT(*)) AS #ROWS o= —oo mmooe oo oo oo
, GROUPI NG(DEPT) AS FD F A0O0 52750 1 0 O
, GROUPI NG(SEX) AS FS F C01 90470 3 0 0
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY ROLLUP(SEX) F - 216650 7 1 0
, ROLLUP(DEPT) M AOO 75750 2 0 0
CRDER BY SEX M BO1 41250 1 0 O
, DEPT; M D11 148670 6 0 O
M - 265670 9 1 0
- A00 128500 3 0 1
- BO1 41250 1 0 1
- o1 90470 3 0 1
- D11 222100 9 0 1
- - 482320 16 1 1

Figure 367, Two independent ROLLUPS

Below we use an inner set of parenthesis to tell the ROLLUP to treat the two fields as one,
which causes us to only get the detailed rows, and the grand-total summary:

SELECT DEPT ANSVER
, SEX s —_——————————————
, SUM SALARY) AS SALARY DEPT SEX SALARY #ROWS FD FS
,SMALLI NT(COUNT(*)) AS #ROMNB ~ -==- —== —mmeeo mmeee o oo
, GROUPI NG{ DEPT) AS FD AO0 F 52750 1.0 0
, GROUPI NG(SEX) AS FS AO0 M 75750 2 00
FROM EMPLOYEE_VI EW BO1 M 41250 1 0 0
GROUP BY ROLLUP((DEPT, SEX)) Q1 F 90470 3 00
ORDER BY DEPT DI1 F 73430 3 00
, SEX; DI1 M 148670 6 0 0
- - 482320 16 1 1

Figure 368, Combined-field ROLLUP

The HAVING statement can be used to refer to the two GROUPING fields. For example, in
the following query, we eliminate all rows except the grand total:

SELECT SUM SALARY) AS SALARY ANSVEER
, S'\/ALL| NT(CQJNT(*)) AS #RO/\S o=

FROM EMPLOYEE VI EW SALARY #ROWS
GROUP BY ROLLUP(SEX il e
, DEPT) 482320 16

HAVING GROUPI NG DEPT)
AND GROUPI NG(SEX)
ORDER BY SALARY;

Figure 369, Use HAVING to get only grand-total row

1
1

Below isalogicaly equivalent SQL statement:

SELECT SUM SALARY) AS SALARY ANSVEER
, SMALLI NT(COUNT(*)) AS #RO\6 ============
FROM EMPLOYEE_VI EW SALARY #ROWS

GROUP BY GROUPI NG SETS(()): e e
482320 16
Figure 370, Use GROUPING SETSto get grand-total row

Hereis another:

132 Group By and Having

DB2 UDB V8.1 Cookbook ©

SELECT SUM SALARY) AS SALARY ANSWER
, SMALLI NT(COUNT(*)) AS #ROWS ============
FROM EMPLOYEE VI EW SALARY #ROWS
GROUP BY (); e e
482320 16
Figure 371, Use GROUP BY to get grand-total row
And another:
SELECT SUM SALARY) AS SALARY ANSWER
, SMALLI NT(COUNT(*)) AS #ROWS ============
FROM EMPLOYEE VI EW SALARY #ROWS

482320 16
Figure 372, Get grand-total row directly

CUBE Statement

A CUBE expression displays a cross-tabulation of the sub-totals for any specified fields. As
such, it generates many more totals than the similar ROLLUP.

GROUP BY CUBE(A, B, C) ===> GROUP BY GROUPI NG SETS(

GROUP BY CUBE(C, B) ===> GROUP BY GROUPI NG SETS(

GROUP BY CUBE(A) ===> GROUP BY GROUPI NG SETS(

Figure 373, CUBE vs. GROUPING SETS

As with the ROLLLUP statement, any set of fieldsin nested parenthesisis treated by the
CUBE asasinglefield:
GROUP BY CUBE(A, (B, Q) ===> GROUP BY GROUPI NG SETS((A, B, O
(B, ©)
0
Figure 374, CUBE vs. GROUPING SETS 7

Having multiple CUBE statementsis allowed, but very, very silly:

GROUP BY CUBE(A, B) ==> GROUPI NG SETS((A, B, Q), (A B), (A B, O, (A B)
, CUBE(B, C) (AB,C,(AB),(AQ,(A
. (B,9.,(B),(B O, (B)
,(B,9,(B),(9.0)

Figure 375, CUBE vs. GROUPING SETS

Obvioudly, the above isalot of GROUPING SETS, and even more underlying GROUP BY
statements. Think of the query as the Cartesian Product of the two CUBE statements, which
are first resolved down into the following two GROUPING SETS:

* ((AB).(A)B).0)
+ ((B,O)(B).(©).0)

Order By, Group By, and Having 133

Graeme Birchall ©

SQL Examples
Below is a standard CUBE statement:

SELECT D1 ANSVER
, DEPT —=—=——=—=—=—=—=————=——=—-=—-—=—=——=—=—=—=—=====
, SEX D1 DEPT SEX SAL #R F1 FD FS

, NT(SUM SALARY)) AS SAL

, SMALLI NT(COUNT(*)) AS #R A AO0 F 52750 1 0 O O
, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG DEPT) AS FD A A00 - 128500 3 0 O 1
, GROUPI NG(SEX) AS FS A - F 52750 1 0 1 O
FROM EMPLOYEE_VI EW A - M 75750 2 0 1 O
GROUP BY CUBE(D1, DEPT, SEX) A - - 128500 3 0 1 1
ORDER BY D1 B BO1 M 41250 1 0 O O
, DEPT B BO1 - 41250 1 0 O 1
, SEX; B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C Q01 F 90470 3 0 O O
cC o1 - 90470 3 0 0 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 O O
D D11 M 148670 6 0O O O
D D11 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D - M 148670 6 0 1 O
D - - 222100 9 0 1 1
- AO0O F 52750 1 1 0 O
- A0 M 75750 2 1 0 O
AOO - 128500 3 1 0 1
- B01 M 41250 1 1 O O
- BO1 - 41250 1 1 0 1
- 001 F 90470 3 1 0 O
- 001 - 90470 3 1 0 1
- D11 F 73430 3 1 0 O
- D11 M 148670 6 1 0 O
- D11 - 222100 9 1 0 1
- - F 216650 7 1 1 O
- - M 265670 9 1 1 O
- - - 482320 16 1 1 1
Figure 376, CUBE example
Hereis the same query expressed as GROUPING SETS;
SELECT D1 ANSVEER
, DEPT —=—=——=—=—=—=—=————=——=—-=—-—=—=——=—=—=—=—=====
, SEX D1 DEPT SEX SAL #R F1 FD FS
, I NT(SUM SALARY)) AS SAL S e ee il S ee - -
, SMALLI NT(COUNT(*)) AS #R A AO0 F 52750 1 0 O O
, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG DEPT) AS FD etc... (same as prior query)
, GROUPI NG(SEX) AS FS
FROM EMPLOYEE_VI EW
GROUP BY GROUPI NG SETS ((D1, DEPT, SEX)
, (D1, DEPT)
» (D1, SEX)
, (DEPT, SEX)
. (D1)
» (DEPT)
» (SEX)
()
ORDER BY D1
, DEPT
, SEX;

Figure 377, CUBE expressed using multiple GROUPING SETS

134 Group By and Having

DB2 UDB V8.1 Cookbook ©

Here isthe same CUBE statement expressed as a ROLLUP, plus the required additional
GROUPING SETS:

SELECT D1 ANSVEER
, DEPT S =—=====
. SEX DI DEPT SEX SAL #R F1 FD FS
, INT(SUM SALARY)) AS SAL e e e e ol ool
. SMALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O
, GROUPI NG(D1) AS F1 A A00 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD etc... (same as prior query)
, GROUPI NG SEX) AS FS
FROM EMPLOYEE_VI EW
GROUP BY GROUPI NG SETS (ROLLUP(D1, DEPT, SEX)
, (DEPT, SEX)
. (SEX, DEPT)
. (DL, SEX))
CRDER BY D1
, DEPT
» SEX;

Figure 378, CUBE expressed using ROLLUP and GROUPING SETS

A CUBE on alist of columnsin nested parenthesis acts as if the set of columns was only one
field. Theresult isthat one gets a standard GROUP BY (on the listed columns), plus arow
with the grand-totals:

SELECT D1 ANSVER
, DEPT —==——=———=—=—=—=—=—=—=——-=—-—=—=———=—=—=—=====
, SEX D1 DEPT SEX SAL #R F1 FD FS

L INT(SUM SALARY)) AS SAL =cmmmmcmmmmcmmemcommeac s

, SVALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O

, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O

, GROUPI NG{ DEPT) AS FD B BOL M 41250 1 0 0 O

, GROUPI NG{ SEX) AS FS C 1 F 90470 3 0 0 O
FROM EMPLOYEE VI EW D DI1 F 73430 3 0 0 O
GROUP BY CUBE((D1, DEPT, SEX)) D DI1 M 148670 6 0 0 O
ORDER BY D1 - - - 48232016 1 1 1

, DEPT

, SEX;

Figure 379, CUBE on compound fields

The above query isresolved thus:

GROUP BY CUBE((A B, C) => GROUP BY GROUI NG SETS ((A B,C) => GROUP BY A
() B

. C

UNI ON ALL

GROUP BY()

Figure 380, CUBE on compound field, explanation

Complex Grouping Sets - Done Easy

Many of the more complicated SQL statements illustrated above are essentially unreadable
becauseit is very hard to tell what combinations of fields are being rolled up, and what are

not. There ought to be a more user-friendly way and, fortunately, thereis. The CUBE com-

mand can be used to roll up everything. Then one can use ordinary SQL predicates to select
only those totals and sub-totals that one wants to display.

NOTE: Queries with multiple complicated ROLLUP and/or GROUPING SET statements
sometimes fail to compile. In which case, this method can be used to get the answer.

To illustrate this technique, consider the following query. It summarizes the datain the sam-
ple view by three fields:

Order By, Group By, and Having 135

Graeme Birchall ©

SELECT D1 AS D1 ANSVER
, DEPT AS DPT —==—=—==—===—=—========
, SEX AS SX D1 DPT SX SAL R

, | NT(SUM SALARY)) AS SAL e e ee e -

, SVALLI NT(COUNT(*)) AS R A A00 F 52750 1
FROM EMPLOYEE_VI EW A AOO M 75750 2
GROUP BY D1 B BOL M 41250 1
, DEPT C 1 F 90470 3
, SEX D DI1 F 73430 3
ORDER BY 1, 2, 3; D DI1 M 148670 6

Figure 381, Basic GROUP BY example

Now imagine that we want to extend the above query to get the following sub-total rows:

DESI RED SUB- TOTALS EQUI VI LENT TO

D1, DEPT, and SEX GROUP BY GROUPI NG SETS ((D1, DEPT, SEX)
D1 and DEPT. , (D1, DEPT)

D1 and SEX , (D1, SEX)

D1. , (D1)

SEX. , (SEX)

G and total. , ()

GROUP BY ROLLUP(D1, DEPT)
, ROLLUP(SEX)
Figure 382, Sub-totals that we want to get

Rather than use either of the syntaxes shown on the right above, below we use the CUBE ex-
pression to get all sub-totals, and then select those that we want:

SELECT *
FROM (SELECT D1 AS D1
, DEPT AS DPT
, SEX AS SX
. I NT(SUM SALARY)) AS SAL
. SMALLI NT(COUNT(*)) AS #R
. SMALLI NT(GROUPI NG(D1)) AS GL
. SMALLI NT(GROUPI NG DEPT)) AS GD
. SVALLI NT(GROUPI NG{ SEX))~ AS GS
FROM EMPLOYEE_VI EW ANSVER
GROUP BY CUBE(D1, DEPT, SEX) e
) AS XXX D1 DPT SX SAL #R GL CGD GS
WHERE (Gl,GD, GS) = (0,0, 0) Ce e e e ce e e -
OR (G, a6, GS) =(0,0,1) A A00 F 52750 1 0 O O
R (GL @D GS) = (0,1,0) A AOM 75750 2 0 0 O
R (GL GDGS) = (0,1, 1) A A00 - 128500 3 0 0 1
R (GL GDGS) = (1,1,0) A - F 52750 1 0 1 O
R (GL @D GS) = (1,1, 1) A - M 75750 2 0 1 O
ORDER BY 1, 2, 3; A - - 128500 3 0 1 1
B BO1I M 41250 1 0 O O
B BO1l - 41250 1 0 O 1
B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C Q01 F 90470 3 0 0O O
c Qo1 - 90470 3 0 0 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 0 O
D D11 M 148670 6 O O O
D D11 - 222100 9 0 O 1
D - F 73430 3 0 1 O
D - M 148670 6 O 1 O
D - - 222100 9 0 1 1
- - F 216650 7 1 1 O
- - M 265670 9 1 1 O
- - - 48232016 1 1 1

Figure 383, Get lots of sub-totals, using CUBE

136 Group By and Having

DB2 UDB V8.1 Cookbook ©

In the above query, the GROUPING function (see page 47) is used to identify what fields are
being summarized on each row. A value of one indicates that the field is being summarized;
while avalue of zero meansthat it is not. Only the following combinations are kept:

(GL,GD,GS) = (0,0,0) <== D1, DEPT, SEX
(GL, &, G5 = (0,0,1) <== D1, DEPT
(GL,GD,GS) = (0,1,0) <== D1, SEX

(G, &, G5 =(0,1,1) <== DI,

(G, D, GS) = (1,1,0) <== SEX,

(GL, G GS) =(1,1,1) <== grand total

Figure 384, Predicates used - explanation

Hereis the same query written using two ROLLUP expressions. Y ou can be the judge as to
which isthe easier to understand:

SELECT D1 ANSVER
, DEPT e e e e
, SEX D1 DEPT SEX SAL #R

CINT(SUM SALARY)) AS SAL oo ool

, SVALLI NT(COUNT(*)) AS #R A A0 F 52750 1

FROM EMPLOYEE_VI EW A A0 M 75750 2
GROUP BY ROLLUP(DI, DEPT) A AO0 - 128500 3
, ROLLUP(SEX) A - F 52750 1

ORDER BY 1, 2, 3; A - M 75750 2
A - - 128500 3

B BO1L M 41250 1

B BOl - 41250 1

B - M 41250 1

B - - 41250 1

C 1 F 90470 3

c o1 - 90470 3

c - F 90470 3

c - - 90470 3

D DI1 F 73430 3

D DI1 M 148670 6

D DI1 - 222100 9

D - F 73430 3

D - M 148670 6

D - - 222100 9

- - F 216650 7

- - M 265670 9

- - - 482320 16

Figure 385, Get lots of sub-totals, using ROLLUP

Group By and Order By

One should never assume that the result of a GROUP BY will be a set of appropriately or-
dered rows because DB2 may choose to use a "strange” index for the grouping so asto avoid
doing arow sort. For example, if one says "GROUP BY C1, C2" and the only suitable index
ison C2 descending and then C1, the datawill probably come back in index-key order.
SELECT DEPT, JOB
, COUNT(*)
FROM STAFF

GROUP BY DEPT, JOB
CRDER BY DEPT, JOB;

Figure 386, GROUP BY with ORDER BY

NOTE: Always code an ORDER BY if there is a need for the rows returned from the query
to be specifically ordered - which there usually is.

Order By, Group By, and Having 137

Group By in Join

Graeme Birchall ©

We want to select those rowsin the STAFF table where the average SALARY for the em-
ployee’s DEPT is greater than $18,000. Answering this question requires using a JOIN and
GROUP BY in the same statement. The GROUP BY will have to be done first, then its' result

will be joined to the STAFF table.

There are two syntacticaly different, but technically similar, ways to write this query. Both
techniques use atemporary table, but the way by which thisis expressed differs. In the first

example, we shall use a common table expression:

W TH STAFF2(DEPT, AVGSAL) AS
(SELECT DEPT
, AVG(SALARY)
FROM STAFF
GROUP BY DEPT
HAVING AVG SALARY) > 18000

)
SELECT A ID
, A, NAMVE
, A. DEPT
FROM STAFF A
, STAFF2 B
WHERE A. DEPT = B. DEPT
CRDER BY A. | D,

ANSVER

I D NAME DEPT
160 Mblinare 10
210 Lu 10
240 Dani el s 10
260 Jones 10

Figure 387, GROUP BY on one side of join - using common table expression

In the next example, we shall use afull-select:
SELECT A ID

, A, NAMVE
, A. DEPT
FROM STAFF A
, (SELECT DEPT AS DEPT
, AVG SALARY) AS AVGSAL

FROV STAFF
GROUP BY DEPT
HAVING ~ AVG(SALARY) > 18000
)AS B

WHERE A DEPT = B. DEPT

ORDER BY A. 1D

Figure 388, GROUP BY on one side of join - using full-select

COUNT and No Rows

ANSVER

ID NAME DEPT
160 Mblinare 10
210 Lu 10
240 Dani el s 10
260 Jones 10

When there are no matching rows, the value returned by the COUNT depends upon whether

thisisaGROUP BY in the SQL statement or not:
SELECT COUNT(*) AS C1

FROM STAFF
WHERE ID < 1;

SELECT COUNT(*) AS C1

FROM STAFF
WHERE ID< 1
GROUP BY I D,

Figure 389, COUNT and No Rows

See page 257 for a comprehensive discussion of what happens when no rows match.

138

Group By and Having

DB2 UDB V8.1 Cookbook ©

Joins

A joinisused to relate sets of rowsin two or more logical tables. The tables are alwaysjoined
on arow-by-row basis using whatever join criteria are provided in the query. The result of a
join isalways a new, albeit possibly empty, set of rows.

In ajoin, the matching rows are joined side-by-side to make the result table. By contrast, in a
union (see page 173) the matching rows are joined (in a sense) one-above-the-other to make
the result table.

Why Joins Matter

The most important datain arelational database is not that stored in the individual rows.
Rather, it is the implied relationships between sets of related rows. For example, individual
rows in an EMPLOY EE table may contain the employee ID and salary - both of which are
very important data items. However, it is the set of al rowsin the same table that gives the
gross wages for the whole company, and it is the (implied) relationship between the EM-
PLOY EE and DEPARTMENT tables that enables one to get a breakdown of employees by
department and/or division.

Joins are important because one uses them to tease the relationships out of the database. They
are also important because they are very easy to get wrong.

Sample Views

CREATE VI EW STAFF_V1 AS STAFF_V1 STAFF_V2
SELECT | D, NAME Foeo - + - +
FROM STAFF | I D] NAME | [IDJoB |
VWHERE | D BETWEEN 10 AND 30; [--]-------- [[--]------ [
| 10| Sanders | | 20| Sal es |
CREATE VI EW STAFF_V2 AS | 20| Pernal | [30| A erk |
SELECT 1D, JOB | 30| Mar enghi | | 30 Mor [
FROM STAFF R + | 40| Sal es |
VWHERE | D BETWEEN 20 AND 50 | 50| Mor [
UNI ON ALL N +
SELECT ID, "Cerk’ AS JOB
FROM STAFF

VWHERE | D = 30;
Figure 390, Sample Views used in Join Examples

Observe that the above two views have the following characteristics:
« Both views contain rows that have no corresponding ID in the other view.

* IntheV2 view, there are two rowsfor ID of 30.

Join Syntax

DB2 UDB SQL comes with two quite different ways to represent ajoin. Both syntax styles
will be shown throughout this section though, in truth, one of the stylesis usualy the better,
depending upon the situation.

Thefirst style, which isonly really suitable for inner joins, involves listing the tables to be
joined in aFROM statement. A comma separates each table name. A subsequent WHERE
statement constrains the join.

Joins 139

Graeme Birchall ©

»SELECT ... FROM J;"[able name | }
L correlation name J

L WHERE join and other predicates J
Figure 391, Join Syntax #1

Here are some sample joins:

SELECT V1.1D JO N ANSVEER
, V1. NAMVE ——=—=—=—=——=—=—=—=—=—=—=—===
,V2.J0B I D NAME JOB
FROM STAFF_V1 V1 e
, STAFF_V2 V2 20 Per nal Sal es
WHERE V1.I1D = V2.1D 30 Marenghi Cerk
ORDER BY V1.1D 30 Marenghi Myr
, V2. J0B;
Figure 392, Sample two-table join
SELECT V1i.1D JO N ANSVER
,V2.J0B ————————————————=
, V3. NAME ID JOB NAME
FROV STAFF_V1 V1 S
, STAFF_V2 V2 30 Cd erk Marenghi
, STAFF_V1 V3 30 Myr Mar enghi

WHERE V1.I1D = V2.1D
AND V2.1D = V3.ID
AND V3. NAME LI KE ' M6

CRDER BY V1. NAME

, V2. J0B;

Figure 393, Sample three-table join

The second join style, which is suitable for both inner and outer joins, involves joining the
tables two at atime, listing the type of join as one goes. ON conditions constrain the join
(note: there must be at least one), while WHERE conditions are applied after the join and
constrain the result.

INNER

F SELECT ... FROM — table name T }
L C. nameJ LEFT ‘
RIGHT L OUTER J
FULL

F JOIN — table name — ON — join predicates
L WHERE join & other predicates
Figure 394, Join Syntax #2

The following sample joins are logically equivalent to the two given above:

SELECT V1.1D JO N ANSVEER

, V1. NAMVE ——=—=—=—=——=—=—=—=—=—=—=—===

,V2.J0B I D NAME JOB
FROM STAFF_V1 Vi R
I NNER JO N 20 Pernal Sal es

STAFF_V2 V2 30 Marenghi Cerk

ON V1i.I1D = V2.1D 30 Marenghi Myr
ORDER BY V1.1D

, V2. JOB;

Figure 395, Sample two-table inner join

140 Join Syntax

DB2 UDB V8.1 Cookbook ©

SELECT V1.ID JO N ANSWVER
, V3. NAME ID JOB NANMVE
FROM STAFF_V1 v1i e e e
JAON 30 Cd erk Marenghi
STAFF_V2 V2 30 Myr Mar enghi
ON V1.ID = V2.1D
JON
STAFF_V1 V3
ON V2.1D = V3.ID

WHERE V3. NAME LI KE ' M6
CRDER BY V1. NAME
, V2. J08B;

Figure 396, Sample three-table inner join
ON vs. WHERE

A join written using the second syntax style shown above can have either, or both, ON and
WHERE checks. These two types of check work quite differently:

* WHERE checks are used to filter rows, and to define the nature of the join. Only those
rows that match all WHERE checks are returned.

e ON checks define the nature of the join. They are used to categorize rows as either joined
or not-joined, rather than to exclude rows from the answer-set, though they may do thisin
some situations.

Let illustrate this difference with asimple, if dightly silly, Ieft outer join:

SELECT * ANSVEER

FROM STAFF_V]_ V1 ————=—=—=—=—=—=—=—==—=—=—=====

LEFT OUTER JO N I D NAME 1D JOB
STAFF_V2 v2 e eeeememe ae oo

ON 1 =1 10 Sanders - -

AND Vi.ID = V2.1D 20 Pernal 20 Sal es

CORDER BY V1.1D 30 Marenghi 30 derk
, V2. JOB; 30 Marenghi 30 Myr

Figure 397, Sample Views used in Join Examples
Now lets replace the second ON check with a WHERE check:

SELECT * ANSVER

FROM STAFF_V]_ V1 —==—=—=—=—=—=—=—=—=—=========

LEFT OQUTER JO N I D NAVE 1D JOB
STAFF_V2 V2 e eeeeme ae oo

ON 1 =1 20 Per nal 20 Sal es

VWHERE V1.1D = V2.1D 30 Marenghi 30 derk

ORDER BY V1.1D 30 Marenghi 30 Myr

, V2. J0B;
Figure 398, Sample Views used in Join Examples

In the first example above, al rows were retrieved from the V1 view. Then, for each row, the
two ON checks were used to find matching rows in the V2 view. In the second query, al rows
were again retrieved from the V1 view. Then each V1 row was joined to every row in the V2
view using the (silly) ON check. Finally, the WHERE check was applied to filter out al pairs
that do not match on ID.

Can an ON check ever exclude rows? The answer is complicated:

e Inaninnerjoin, an ON check can exclude rows because it is used to define the nature of
the join and, by definition, in an inner join only matching rows are returned.

Joins 141

Graeme Birchall ©

* Inapartia outer join, an ON check on the originating table does not exclude rows. It
simply categorizes each row as participating in the join or not.

* Inapartial outer join, an ON check on the table to be joined to can exclude rows because
if the row failsthe test, it does not match the join.

¢ Inafull outer join, an ON check never excludesrows. It simply categorizes them as
matching the join or not.

Each of the above principles will be demonstrated as we look at the different types of join.

Join Types

A generic join matches one row with another to create a new compound row. Joins can be
categorized by the nature of the match between the joined rows. In this section we shall dis-
cuss each join type and how to code it in SQL.

Inner Join

Aninner-join is another name for a standard join in which two sets of columns are joined by
matching those rows that have equal data values. Most of the joins that one writes will proba-
bly be of this kind and, assuming that suitable indexes have been created, they will almost
always be very efficient.

STAFF_V1 STAFF_V2 I NNER- JO N ANSVER
Feo e oo + Feo e o + e
| 1 D] NAME | |[1DJoB | I D NAME ID JOB
|_-| -------- | |--|------ —========> 000 e mmmmmmmm e e mmm -
| 10| Sanders | | 20| Sal es | 20 Pernal 20 Sal es
| 20| Pernal | | 30| A erk | 30 Marenghi 30 derk
| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Myr
AR + | 40| Sal es |
[50 Myr |
B +
Figure 399, Example of Inner Join
SELECT * ANSVEER
FROM STAFF_V]_ V1 ————=—=——=—=—=—=—=—=—=======
, STAFF_V2 V2 | D NAME ID JOB
VWHERE Vi.1D=V2.1D e eeeeeeee oo e
ORDER BY V1.1D 20 Pernal 20 Sal es
, V2. JOB; 30 Marenghi 30 Cerk

30 Marenghi 30 Myr
Figure 400, Inner Join QL (1 of 2)

SELECT * ANSVEER

FROM STAFF_V1 Vi e]

INNER JO N I D NAME IDJCB
STAFF_V2 V2 ee eeeeeeee o o oo

ON V1.1D = V2.1D 20 Pernal 20 Sal es

CRDER BY V1.1D 30 Marenghi 30 Cerk
, V2. J0B; 30 Marenghi 30 Mgr

Figure 401, Inner Join QL (2 of 2)
ON and WHERE Usage

In an inner join only, an ON and a WHERE check work much the same way. Both define the
nature of the join, and because in an inner join, only matching rows are returned, both act to
exclude all rowsthat do not match the join.

142 Join Types

DB2 UDB V8.1 Cookbook ©

Below isan inner join that uses an ON check to exclude managers:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ————=—=—=—=—=—=—=—==—=—=—=====
I NNER JO N I D NAME 1D JOB

STAFF_V2 V2 R E R - m----
ON Vi.1ID = V2.1D 20 Pernal 20 Sal es
AND V2.J0B <> " Myr’ 30 Marenghi 30 Cerk
ORDER BY V1.1D

, V2. J0B;

Figure 402, Inner join, using ON check

Hereis the same query written using a WHERE check

SELECT * ANSVER
FROM STAFF_Vl V1 —==—=—=—=—=—=—=—=—=—=========
I NNER JO N I D NAMVE 1D JOB

STAFF_V2 V2 R e
ON Vi.1D = V2.1D 20 Per nal 20 Sal es
VWHERE V2.J0B <> ' Myr’ 30 Marenghi 30 derk
ORDER BY V1.1D

, V2. JOB;

Figure 403, Inner join, using WHERE check

Left Outer Join

A left outer join is the same as saying that | want all of the rowsin the first table listed, plus
any matching rows in the second table:

STAFF_V1 STAFF_V2 LEFT- QUTER- JO N ANSVEER
Feo e oo + Feo e o + e sy by
| 1 D] NAME | |1DJoB | I D NAME IDJOB
I T, B ——=——=—=—=—==> - e e e - e -
| 10| Sanders | | 20| Sal es | 10 Sanders - -
| 20| Per nal | | 30| A erk | 20 Per nal 20 Sal es
| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Cerk
R + | 40| Sal es | 30 Marenghi 30 Mgr
|50 Mgr |
L,
Figure 404, Example of Left Outer Join
SELECT *
FROM STAFF_V1 Vi1
LEFT QUTER JO N
STAFF_V2 V2
ON V1i.1D = V2.1D
ORDER BY 1, 4;

Figure 405, Left Outer Join SQL (1 of 2)

It is possible to code aleft outer join using the standard inner join syntax (with commas be-
tween tables), but it isalot of work:

SELECT V1.* <== This join gets all
, V2. * rows in STAFF_V1

FROM STAFF V1 Vi1 that match rows
, STAFF_V2 V2 in STAFF_V2.

VWHERE V1i.1D = V2.1D

UNI ON

SELECT V1.* <== This query gets
, CAST(NULL AS SMALLINT) AS ID all the rows in
, CAST(NULL AS CHAR(5)) AS JOB STAFF_V1 with no

FROM STAFF_V1 V1 mat chi ng r ows

VWHERE V1.1D NOT IN in STAFF_V2.
(SELECT | D FROM STAFF_V2)

ORDER BY 1, 4;

Figure 406, Left Outer Join SQL (2 of 2)

Joins 143

Graeme Birchall ©

ON and WHERE Usage

In apartial outer join (i.e. left or right), an ON check works differently, depending on what
table (field) it refersto:

e Ifitrefersto afield in the table being joined to, it determines whether the related row
matches the join or not.

o Ifitrefersto afield in the table being joined from, it determines whether the related row
finds a match or not. Regardless, the row will be returned.

In the next example, those rowsin the table being joined to (i.e. the V2 view) that match on
ID, and that are not for a manager are joined to:

SELECT * ANSVEER

FROM STAFF_V]_ V1 ———=—=—=—=—=—=—=—=—=—=—=—=—=====

LEFT OUTER JO N I D NAME 1D JOB
STAFF_V2 v2 e eeeememe ae oo

ON Vi.ID = V2.1D 10 Sanders - -

AND V2.J0B <> " Myr’ 20 Pernal 20 Sal es

CORDER BY V1.I1D 30 Marenghi 30 derk
, V2. J0B;

Figure 407, ON check on table being joined to

If we rewrite the above query using a WHERE check we will lose arow (of output) because
the check is applied after the join is done, and a null JOB does not match:

SELECT * ANSVEER
FROM STAFF_V]_ V1 e
LEFT OUTER JO N | D NAMVE ID JOoB
STAFF_V2 V2 i
ON Vi.1D = V2.1D 20 Per nal 20 Sal es
WHERE V2.J0B <> " Myr’ 30 Marenghi 30 Cerk
ORDER BY V1.1D
, V2. J0B;

Figure 408, WHERE check on table being joined to (1 of 2)
We could make the WHERE equivalent to the ON, if we also checked for nulls:

SELECT * ANSVER
FROM STAFF_V]_ V1 —==—=—=—=—=—=—=—=—=—=========
LEFT OQUTER JO N I D NAVE 1D JOB
STAFF_V2 V2 e eeeeeme ae oo
ON V1i.1D = V2.1D 10 Sanders - -
VWHERE (V2.J0B <> ' Myr’ 20 Pernal 20 Sal es
R V2.JOB IS NULL) 30 Marenghi 30 Cerk
ORDER BY V1.1D
, V2. J0B;

Figure 409, WHERE check on table being joined to (2 of 2)

In the next example, those rowsin the table being joined from (i.e. the V1 view) that match
on ID and have aNAME >N’ participate in the join. Note however that V1 rows that do not
participatein thejoin (i.e. ID = 30) are still returned:

SELECT * ANSVEER
FROM STAFF_V1 Vi e]
LEFT QUTER JO N I D NAME IDJCB
STAFF_V2 v2 ee emeeemee - oo
ON V1.ID = V2.1D 10 Sanders - -
AND V1. NAME > ' N 20 Pernal 20 Sal es
CRDER BY V1.I1D 30 Marenghi - -
, V2. J08B;

Figure 410, ON check on table being joined from

144 Join Types

DB2 UDB V8.1 Cookbook ©

If we rewrite the above query using a WHERE check (on NAME) we will lose arow because
now the check excludes rows from the answer-set, rather than from participating in the join:

SELECT * ANSVEER
FROM STAFF_Vl V1 ————=—=—=—=—=—=—=—==—=—=—=====
LEFT OUTER JO N I D NAME 1D JOB
STAFF_V2 v2 e eeeememe ae oo
ON Vi.ID = V2.1D 10 Sanders - -
WHERE V1. NAME > ' N 20 Pernal 20 Sal es
ORDER BY V1.1D
, V2. J0B;

Figure 411, WHERE check on table being joined from

Unlike in the previous example, there is no way to ater the above WHERE check to make it
logically equivalent to the prior ON check. The ON and the WHERE are applied at different
times and for different purposes, and thus do completely different things.

Right Outer Join

A right outer join isthe inverse of aleft outer join. One gets every row in the second table
listed, plus any matching rowsin the first table:

STAFF_V1 STAFF_V2 Rl GHT- OUTER- JO N ANSVER
[L + e p— + o o o o e e
| | D] NAVE | |IDJOB | | D NAME ID JOB
|-- . T —========> = ee e mmmmmme em mmmana
| 10| Sanders | | 20| Sal es | 20 Pernal 20 Sal es
| 20| Pernal | | 30| A erk | 30 Marenghi 30 Cerk
| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Mgr
Focmmmeeee + | 40| Sal es | - - 40 Sal es
| 50| Myr | - - 50 Myr
S +
Figure 412, Example of Right Outer Join
SELECT * ANSVEER
FROM STAFF_V1 Vi e]
Rl GHT OQUTER JO N I D NAME 1D JOB
STAFF_V2 v2 e eeeememe ae oo
ON V1.1D = V2.1D 20 Pernal 20 Sal es
CRDER BY V2.1D 30 Marenghi 30 Cerk
, V2. J0B; 30 Marenghi 30 Myr
- - 40 Sal es
- - 50 Myr
Figure 413, Right Outer Join SQL (1 of 2)
It isalso possible to code aright outer join using the standard inner join syntax:
SELECT V1. * ANSVEER
, V2. * —————————————————=—=—=—
FROM STAFF_V1 Vi I D NAME 1D JOB
, STAFF_V2 V2 e eeeeme ae oo
WHERE V1.1D = V2.1D 20 Pernal 20 Sal es
UNI ON 30 Marenghi 30 Cerk
SELECT CAST(NULL AS SMALLI NT) AS I D 30 Marenghi 30 Myr
, CAST(NULL AS VARCHAR(9)) AS NAME - - 40 Sal es
V2. % - - 50 Myr
FROM STAFF_V2 V2

WHERE V2. 1D NOT IN
(SELECT | D FROM STAFF_V1)
ORDER BY 3, 4;

Figure 414, Right Outer Join SQL (2 of 2)

Joins 145

Graeme Birchall ©

ON and WHERE Usage

Therules for ON and WHERE usage are the same in aright outer join as they are for aleft
outer join (see page 144), except that the relevant tables are reversed.

Full Outer Joins

A full outer join occurs when all of the matching rows in two tables are joined, and thereis
also returned one copy of each non-matching row in both tables.

STAFF_V1 STAFF_V2 FULL- QUTER- JO N ANSWER
Feo e oo + Feo e o + e sy by
| 1 D] NAME | |[1DJoB | I D NAME ID JOB
i | |_- [—========> . . e -
| 10| Sanders | | 20| Sal es | 10 Sanders - -
| 20| Per nal | | 30| A erk | 20 Pernal 20 Sal es
| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Cerk
R + | 40| Sal es | 30 Marenghi 30 Myr
| 50| Myr | - - 40 Sal es
Foomao---- + - - 50 Myr
Figure 415, Example of Full Outer Join
SELECT * ANSVEER
FROM STAFF_V]_ V1 ————=—————————————=——=—
FULL QUTER JO N I D NAME ID JOB
STAFF_V2 V2 R T
ON V1.1D = V2.1D 10 Sanders - -
ORDER BY V1.1D 20 Pernal 20 Sal es
,V2.1D 30 Marenghi 30 Cerk
, V2. J0B; 30 Marenghi 30 Mgr
- - 40 Sal es
- - 50 Myr
Figure 416, Full Outer Join SQL
Hereis the same done using the standard inner join syntax:
SELECT V1.* ANSVEER
, V2. * ————=—————————————=——=—
FROM STAFF_V1 V1 I D NAME ID JOB
, STAFF_V2 V2 R T
VWHERE V1.1D = V2.1D 10 Sanders - -
UNI ON 20 Pernal 20 Sal es
SELECT V1.* 30 Marenghi 30 Cerk
, CAST(NULL AS SMALLINT) AS ID 30 Marenghi 30 Myr
, CAST(NULL AS CHAR(5)) AS JOB - - 40 Sal es
FROM STAFF_V1 Vi - - 50 Myr

WHERE VI.ID NOT IN
(SELECT | D FROM STAFF_V2)
UNI ON
SELECT CAST(NULL AS SMALLINT) AS ID
, CAST(NULL AS VARCHAR(9)) AS NAME
V2. *
FROM STAFF_ V2 V2
WHERE V2.1D NOT IN
(SELECT | D FROM STAFF V1)
ORDER BY 1, 3, 4;

Figure 417, Full Outer Join SQL

The above is reasonably hard to understand when two tables are involved, and it goes down
hill fast as more tables are joined. Avoid.

ON and WHERE Usage

In afull outer join, an ON check is quite unlike a WHERE check in that it never resultsin a
row being excluded from the answer set. All it does is categorize the input row as being either

146 Join Types

DB2 UDB V8.1 Cookbook ©

matching or non-matching. For example, in the following full outer join, the ON check joins
those rows with equal key values:

SELECT * ANSVER
FROM STAFF_V]_ V1 —=——————————=—=——=—=—=—==
FULL OQUTER JO N I D NAME 1D JOB
STAFF V2 v2 ee eeemeaee oo oo
ON V1i.ID = V2.1D 10 Sanders - -
ORDER BY V1.1D 20 Pernal 20 Sal es
, V2.1 D 30 Marenghi 30 derk
, V2. JOB; 30 Marenghi 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 418, Full Outer Join, match on keys

In the next example, we have deemed that only those IDs that match, and that also have a
value greater than 20, are a true match:

SELECT * ANSVER
FROM STAFF_V]_ V1 —=——————————=—=——=—=—=—==
FULL OQUTER JO N I D NAME ID JOB
STAFF V2 v2 ee eeemeaee oo oo
ON V1.1D = V2.I1D 10 Sanders - -
AND V1i.1D > 20 20 Pernal - -
CORDER BY V1.1D 30 Marenghi 30 derk
, V2. 1D 30 Marenghi 30 Myr
, V2. J0B; - - 20 Sal es
- - 40 Sal es
- - 50 Myr

Figure 419, Full Outer Join, match on keys> 20

Observe how in the above statement we added a predicate, and we got more rows! Thisis
because in an outer join an ON predicate never removes rows. It simply categorizes them as
being either matching or non-matching. If they match, it joins them. If they don't, it passes
them through.

In the next example, nothing matches. Consequently, every row is returned individualy. This
guery islogically similar to doing a UNION ALL on the two views:

SELECT * ANSVER
FROM STAFF_V]_ V1 —==—=—=—=—=—=—=—=—=—=========
FULL OUTER JO N I D NAVE 1D JOB
STAFF_V2 V2 e eeeeeme ae oo
ON V1i.I1D = V2.1D 10 Sanders - -
AND +1 = -1 20 Pernal - -
ORDER BY V1.1D 30 Marenghi - -
V2.1 D - - 20 Sal es
, V2. JOB; - - 30 derk
- - 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 420, Full Outer Join, match on keys (no rows match)

ON checks are somewhat like WHERE checks in that they have two purposes. Within atable,
they are used to categorize rows as being either matching or non-matching. Between tables,
they are used to define the fields that are to be joined on.

In the prior example, the first ON check defined the fields to join on, while the second join
identified those fields that matched the join. Because nothing matched (due to the second pre-
dicate), everything fell into the "outer join" category. This means that we can remove the first
ON check without altering the answer set:

Joins 147

Graeme Birchall ©

SELECT * ANSVER
FROM STAFF_V]_ V1 ————=—=—=—=—=—=—=—=—=—===—====
FULL OUTER JO N I D NAVE 1D JOB
STAFF_V2 V2 e eeeeeme ae oo
ON +1 = -1 10 Sanders - -
ORDER BY V1.1D 20 Pernal - -
,V2.1D 30 Marenghi - -
, V2. J0B; - - 20 Sal es
- - 30 derk
- - 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 421, Full Outer Join, don't match on keys (no rows match)

What happens if everything matches and we don't identify the join fields? Theresultin a
Cartesian Product:

SELECT * ANSVEER
FROM STAFF_V]_ V1 —————————————————=—=—=
FULL QUTER JO N I D NAME 1D JOB
STAFF_V2 V2 ee eeeeeeae ae aae
ON +1 <> -1 10 Sanders 20 Sal es
ORDER BY V1.1D 10 Sanders 30 derk
,V2.1D 10 Sanders 30 Myr
, V2. J0B; 10 Sanders 40 Sal es

10 Sanders 50 Myr
20 Pernal 20 Sal es

STAFF_V1 STAFF_V2 20 Pernal 30 Cerk
R + SRR + 20 Pernal 30 Myr
| 1 D] NAMVE | |1DJoB | 20 Pernal 40 Sal es

[--]-------- | [--]------ | 20 Pernal 50 Myr

| 10| Sanders | | 20| Sal es | 30 Marenghi 20 Sal es

| 20| Pernal | | 30| A erk | 30 Marenghi 30 derk

| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Myr

R + | 40| Sal es | 30 Marenghi 40 Sal es
I

30 Marenghi 50 Myr

Figure 422, Full Outer Join, don't match on keys (all rows match)

In an outer join, WHERE predicates behave as if they were written for an inner join. In par-
ticular, they always do the following:

* WHERE predicates defining join fields enforce an inner join on those fields.

* WHERE predicates on non-join fields are applied after the join, which means that when
they are used on not-null fields, they negate the outer join.

Here is an example of a WHERE join predicate turning an outer join into an inner join:

SELECT * ANSVEER

FROM STAFF_V]_ V1 ———=—=—=—=—=—=—=—=—=—=—=—=—=====

FULL JO N I D NAME 1D JOB
STAFF_V2 v2 e eeeememe ae oo

ON V1.1D = V2.1D 20 Pernal 20 Sal es

VWHERE V1.1D = V2.1D 30 Marenghi 30 Cerk

CRDER BY 1, 3, 4; 30 Marenghi 30 Mgr

Figure 423, Full Outer Join, turned into an inner join by WHERE

To illustrate some of the complications that WHERE checks can cause, imagine that we want
todoaFULL OUTER JOIN on our two test views (see below), limiting the answer to those
rows wherethe "V1 ID" field isless than 30. There are several ways to express this query,
each giving a different answer:

148 Join Types

DB2 UDB V8.1 Cookbook ©

STAFF_V1 STAFF_V2
Fommmmmamaam + Fommmamaa- + ANSVEER
| 1 D] NAMVE | |1DJoB | CQUTER-JO N CRI TERI A ============
-] -------- --]------ —————=———=—=———=—=—=—=—==> 2?27?77 DEPENDS
| 10| Sanders | | 20| Sal es | V1.I1D = V2.1D
| 20| Pernal | | 30| A erk | V1.1D < 30
| 30| Mar enghi | | 30| Myr |
AR + | 40| Sal es |
[50 Myr |

Figure 424, Outer join V1.ID < 30, sample data

In our first example, the "V 1.1D < 30" predicate is applied after the join, which effectively
eliminatesal "V2" rowsthat don't match (because their "V 1.ID" valueis null):

SELECT * ANSVEER

FROM STAFF_V]_ V1 —==—=—=—=—=—=—=—=—=—=========

FULL JO N I D NAME 1D JOB
STAFF V2 V2 Lol DI

ON V1.1D = V2.1D 10 Sanders - -

VWHERE V1.1D < 30 20 Pernal 20 Sal es

ORDER BY 1, 3, 4;
Figure 425, Outer join V1.ID < 30, check applied in WHERE (after join)

In the next example the "V 1.ID < 30" check is done during the outer join where it does not
any eliminate rows, but rather limits those that match in the two views:

SELECT * ANSVEER
FROM STAFF_V1 Vi e]
FULL JO N | D NAME ID JOB
STAFF_V2 v2 ee eeeeeoee - oo
ON V1.ID = V2.1D 10 Sanders - -
AND V1.1D < 30 20 Pernal 20 Sal es
ORDER BY 1, 3, 4; 30 Marenghi - -
- - 30 Cerk
- - 30 Myr
- - 40 Sal es
50 Myr

Figure 426, Outer join V1.ID < 30, check applied in ON (during join)

Imagine that what really wanted to have the "V 1.ID < 30" check to only apply to those rows
inthe "V 1" table. Then one has to apply the check befor e the join, which requires the use of a
nested-table expression:

SELECT * ANSVER
FROM (SELECT * —==—=—=—=—=—=—=—=—=—=========
FROM STAFF_V1 I D NAVE 1D JOB
WHERE ID< 30) ASV1l e eeeeoeae oo o
FULL OUTER JO N 10 Sanders - -
STAFF_V2 V2 20 Pernal 20 Sal es
ON V1i.I1D = V2.1D - - 30 derk
ORDER BY 1, 3, 4; - - 30 Myr
- - 40 Sal es
50 Myr

Figure 427, Outer join V1.ID < 30, check applied in WHERE (before join)

Observe how in the above query we still got arow back with an ID of 30, but it came from
the "V 2" table. This makes sense, because the WHERE condition had been applied before we
got to thistable.

There are severa incorrect ways to answer the above question. In the first example, we shall
keep al non-matching V2 rows by allowing to pass any null V1.ID values:

Joins 149

Graeme Birchall ©

SELECT * ANSVEER

FROM STAFF_V]_ V1 —==—=—=—=—=—=—=—=—=—=========

FULL OUTER JO N I D NAME 1D JOB

STAFF_V2 V2 e - -----

ON Vi.1D = V2.1D 10 Sanders - -

VWHERE V1.ID < 30 20 Pernal 20 Sal es
OR V1.1D IS NULL - - 40 Sal es

CRDER BY 1, 3, 4, - - 50 Myr

Figure 428, Outer join V1.ID < 30, (giveswrong answer - see text

There are two problems with the above query: Firgt, it is only appropriate to use when the
V1.ID field is defined as not null, which it isin this case. Second, we lost the row in the V2
table where the ID equaled 30. We can fix this latter problem, by adding another check, but
the answer is still wrong:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ———=—=—=—=—=—=—=—=—=—=—=—=—=====
FULL OUTER JO N I D NAME 1D JOB
STAFF_V2 V2 R E R -- e
ON V1i.1D = V2.1D 10 Sanders - -
WHERE V1.ID < 30 20 Pernal 20 Sal es
OR V1.ID = V2.1D 30 Marenghi 30 derk
R V1.1D I'S NULL 30 Marenghi 30 Myr
ORDER BY 1, 3, 4; - - 40 Sal es
- 50 Myr

Figure 429, Outer join V1.ID < 30, (giveswrong answer - see text)

The last two checks in the above query ensure that every V2 row isreturned. But they also
have the affect of returning the NAME field from the V 1 table whenever there is a match.
Given our intentions, this should not happen.

SUMMARY: Query WHERE conditions are applied after the join. When used in an outer
join, this means that they applied to all rows from all tables. In effect, this means that any
WHERE conditions in a full outer join will, in most cases, turn it into a form of inner join.

Cartesian Product

A Cartesian Product is aform of inner join, where the join predicates either do not exist, or
where they do a poor job of matching the keys in the joined tables.

STAFF_V1 STAFF_V2 CARTESI AN- PRODUCT

[L + e p— + — e e e e e e ————
| I D NAME | |1DJoB | | D NAME IDJOB
| - - | -------- | - - | ------ | —========> e e e mm - .
| 10| Sanders | | 20| Sal es | I D NAME IDJOB

| 20| Per nal | | 30| A erk | R - mee--
| 30| Mar enghi | | 30| Myr | 10 Sanders 20 Sal es
A + | 40| Sal es | 10 Sanders 30 Cerk

I

10 Sanders 30 Myr
o + 10 Sanders 40 Sal es
10 Sanders 50 Myr
20 Pernal 20 Sal es
20 Pernal 30 derk
20 Pernal 30 Mr
20 Pernal 40 Sal es
20 Pernal 50 Myr
30 Marenghi 20 Sal es
30 Marenghi 30 Cerk
30 Marenghi 30 Myr
30 Marenghi 40 Sal es
30 Marenghi 50 Myr

Figure 430, Example of Cartesian Product
Writing a Cartesian Product is simplicity itself. One simply omits the WHERE conditions:

150 Join Types

DB2 UDB V8.1 Cookbook ©

SELECT *

FROM STAFF_V1 Vi
, STAFF_V2 V2

ORDER BY V1.I1D
,V2.1D
, V2. JOB;

Figure 431, Cartesian Product SQL (1 of 2)

One way to reduce the likelihood of writing afull Cartesian Product isto aways use the in-
ner/outer join style. With this syntax, an ON predicate is always required. There is however
no guarantee that the ON will do any good. Witness the following example:

SELECT *
FROM STAFF_V1 Vi
INNER JO N
STAFF_V2 V2
ON A <> ' B
ORDER BY V1.I1D
,V2.1D
, V2. JOB;

Figure 432, Cartesian Product SQL (2 of 2)

A Cartesian Product is almost always the wrong result. There are very few business situations
where it makes sense to use the kind of SQL shown above. The good news is that few people
ever make the mistake of writing the above. But partial Cartesian Products are very common,
and they are also almost always incorrect. Here is an example:

SELECT V2A. 1D ANSVEER
, V2A. JOB ——=—=—==—=—=—===
,V2B. 1D ID JOB 1D
FROM STAFF_V2 v2A e e
, STAFF_V2 V2B 20 Sales 20
VWHERE V2A. JOB = V2B. JOB 20 Sales 40
AND V2A.ID < 40 30 derk 30
ORDER BY V2A. 1D 30 Myr 30
, V2B. I D 30 Myr 50

Figure 433, Partial Cartesian Product SQL

In the above example we joined the two views by JOB, which is not a unique key. The result
was that for each JOB value, we got a mini Cartesian Product.

Cartesian Products are at their most insidious when the result of the (invalid) join isfeed into
aGROUPBY or DISTINCT statement that removes al of the duplicate rows. Below isan
example where the only clue that things are wrong is that the count is incorrect:

SELECT V2.J0B ANSVER
, COUNT(*) AS #ROWS ——=———==—===
FROM STAFF_V1 V1 JOB #RONS
,STAFF_ V2 v2 e e
GROUP BY V2.J0B derk 3
ORDER BY #ROWB Myr 6
, V2. JOB; Sal es 6

Figure 434, Partial Cartesian Product SQL, with GROUP BY

To really mess up with a Cartesian Product you may have to join more than one table. Note
however that big tables are not required. For example, a Cartesian Product of five 100-row
tables will result in 10,000,000,000 rows being returned.

HINT: A good rule of thumb to use when writing a join is that for all of the tables (except
one) there should be equal conditions on all of the fields that make up the various unique
keys. If this is not true then it is probable that some kind Cartesian Product is being done
and the answer may be wrong.

Joins 151

Graeme Birchall ©

.|
Join Notes

Using the COALESCE Function

If you don't like working with nulls, but you need to do outer joins, then lifeistough. In an
outer join, fields in non-matching rows are given null values as placeholders. Fortunately,
these nulls can be eliminated using the COALESCE function.

The COALESCE function can be used to combine multiple fields into one, and/or to elimi-
nate null values where they occur. The result of the COALESCE is always the first non-null
value encountered. In the following example, the two ID fields are combined, and any null
NAME values are replaced with a question mark.

SELECT COALESCE(V1.ID,V2.1D) ASID ANSVER
, COG\I_ESCE(V1. NAME, " ?’) AS NAME ——=—=—=—=——=—=—=—=—=—=—=—===
,V2.J0B | D NAME JOB
FROM STAFF_ V1 vi ee eeeeeee oo
FULL QUTER JO N 10 Sanders -
STAFF_V2 V2 20 Pernal Sal es
ON V1.I1D = V2.1D 30 Marenghi derk
ORDER BY V1.1D 30 Marenghi Mr
, V2. J0B; 40 ? Sal es
50 ? Myr

Figure 435, Use of COALESCE function in outer join

Listing non-matching rows only

Imagine that we wanted to do an outer join on our two test views, only getting those rows that
do not match. Thisisasurprisingly hard query to write.

STAFF_V1 STAFF_V2 ANSVER
Fom e e e o - + [S, + NON- MATCHI NG P e
| | D] NAVE | [IDJOB | OUTER-JO N | D NAMVE ID JOB
e R === ====> . e e e e e e e e e e e m
| 10| Sanders | | 20| Sal es | 10 Sanders - -
| 20| Pernal | | 30| A erk | - - 40 Sal es
| 30| Mar enghi | | 30| Myr | - - 50 Mr
A + | 40| Sal es |
|50 Mgr |
tomm e +
Figure 436, Example of outer join, only getting the non-matching rows
One way to express the above is to use the standard inner-join syntax:
SELECT V1.* <== CGet all the rows
, CAST(NULL AS SMALLINT) AS ID in STAFF_V1 t hat
, CAST(NULL AS CHAR(5)) AS JOB have no mat chi ng
FROM STAFF_V1 Vi row i n STAFF_V2.
WHERE V1.1D NOT IN
(SELECT | D FROM STAFF_V2)
UNI ON
SELECT CAST(NULL AS SMALLI NT) AS ID <== Cet all the rows
, CAST(NULL AS VARCHAR(9)) AS NAME in STAFF_V2 t hat
, V2. * have no mat chi ng
FROM STAFF_V2 V2 row i n STAFF_V1.

WHERE V2.1 D NOT IN
(SELECT |1 D FROM STAFF_V1)
ORDER BY 1, 3, 4;

Figure 437, Outer Join SQL, getting only non-matching rows

152 Join Notes

DB2 UDB V8.1 Cookbook ©

The above question can also be expressed using the outer-join syntax, but it requires the use
of two nested-table expressions. These are used to assign alabel field to each table. Only
those rows where either of the two labels are null are returned:

SELECT *
FROM (SELECT V1. * ," V1" AS FLAG FROM STAFF_V1 V1) AS V1
FULL OUTER JO N
(SELECT V2. * , V2" AS FLAG FROM STAFF_V2 V2) AS V2
ON Vi.ID = V2.1D
VWHERE V1. FLAG | S NULL ANSVEER
OoR V2. FLAG | S NULL S ---————————————=—=—==—====
ORDER BY V1.1D | D NAMVE FLAG I D JOB FLAG
,v2.1D ee e R ----
, V2. J0B; 10 Sanders Vi - - -
- 40 Sales V2
- 50 Myr V2

Figure 438, Outer Join SQL, getting only non-matching rows

Alternatively, one can use two common table expressions to do the same job:

W TH
V1l AS (SELECT V1.* ," V1" AS FLAG FROM STAFF_V1 V1)
, V2 AS (SELECT V2.* , V2" AS FLAG FROM STAFF_V2 V2)
SELECT *
FROM V1 Vi ANSVEER
FULL QUTER JO N S ---————————————=——=—=—====
V2 V2 | D NAMVE FLAG I D JOB FLAG

ON Vi.ID = V2.1D - e------ R ----
VWHERE V1. FLAG | S NULL 10 Sanders Vi1 - - -

R V2. FLAG | S NULL - - - 40 Sal es V2
ORDER BY V1.I1D, V2.1D, V2.J0B; - 50 Myr V2

Figure 439, Outer Join SQL, getting only non-matchi ng rows

If either or both of the input tables have afield that is defined as not null, then label fields can
be discarded. For example, in our test tables, the two ID fields will suffice:

SELECT * STAFF_V1 STAFF_V2
FROM STAFF_V1 Vi1 Foeo - + - +
FULL QUTER JO N | I D] NAME | [IDJoB |
STAFF_V2 V2 [--]-------- [[--]------ [
ON Vi.ID = V2.1D | 10| Sanders | | 20| Sal es |
VWHERE V1.1D IS NULL | 20| Pernal | [30| A erk |
R V2.1D I'S NULL | 30| Mar enghi | | 30 Mor [
ORDER BY V1.1D Foo - | 40| Sal es |
,V2.1D | 50| Mor [
, V2. JOB; Fo-mme - - +

Figure 440, Outer Join SQL, getting only non-matching rows

Join in SELECT Phrase

Imagine that we want to get selected rows from the V1 view, and for each matching row, get
the corresponding JOB from the V2 view - if thereis one:

STAFF_V1 STAFF_V2 ANSVEER
Fom e e e o + Fom e - + LEFT QUTER JO N ——————————————-—===
| 1 D] NAME | |1DJoB | S=============> | D NAME IDJOB
[--]-------- | [--]------ | Vi.ID = V2.1D R - e
| 10| Sanders | | 20| Sal es | V1.1D <> 30 10 Sanders - -
| 20| Per nal | | 30| A erk | 20 Pernal 20 Sal es
| 30| Mar enghi | | 30| Myr |

----------- | 40| Sal es |

|50 Mgr |

Figure 441, Left outer join example

Joins 153

Here is one way to express the above as a query:

SELECT V1.ID

, V1. NAMVE

, V2.J0B
FROM STAFF_V1 V1
LEFT QUTER JO N

STAFF_V2 V2

ON Vi.ID =V2.1D
WHERE V1.1D <> 30

ORDER BY V1.1D ;
Figure 442, Outer Join donein FROM phrase of SQL

Graeme Birchall ©

ANSVER

ID NAVE B
10 Sanders -

20 Pernal Sal es

Below isalogically equivalent left outer join with the join placed in the SELECT phrase of
the SQL statement. In this query, for each matching row in STAFF_V 1, thejoin (i.e. the

nested table expression) will be done:

SELECT V1.ID
, V1. NAMVE
, (SELECT V2.J0B
FROM STAFF_V2 V2
WHERE V1.1D = V2.1D) AS JB
FROM STAFF_V1 V1
WHERE V1.1D <> 30
CRDER BY V1. I D,

Figure 443, Outer Join donein SELECT phrase of SQL

Certain rules apply when using the above syntax:

ANSVER

| D NAME JB

10 Sanders -

20 Pernal Sal es

¢ The nested table expression in the SELECT is applied after all other joins and sub-queries

(i.e. in the FROM section of the query) are done.

¢ The nested table expression acts as a left outer join.

e Only one column and row (at most) can be returned by the expression.

* |f norow isreturned, the result is null.

Given the above restrictions, the following query will fail because more than one V2 row is

returned for every V1 row (for ID = 30):

SELECT V1.ID
, V1. NAMVE
, (SELECT Vv2.J0B
FROM STAFF_V2 V2
WHERE V1.1D = V2.1D) AS JB
FROM STAFF_V1 V1

ORDER BY V1.1D;
Figure 444, Outer Join donein SELECT phrase of SQL - getserror

ANSVER

ID NAVE B
10 Sanders -

20 Pernal Sal es
<error>

To make the above query work for al 1Ds, we have to decide which of the two matching JOB

values for ID 30 we want. Let us assume that we want the maximum:

SELECT V1.1D
, V1. NAMVE
. (SELECT MAX(V2. JOB)
FROM STAFF_\V2 V2
WHERE VI.ID = V2.1D) AS JB
FROM STAFF_V1 V1

ORDER BY V1. 1D,
Figure 445, Outer Join donein SELECT phrase of SQL - fixed

The above is equivalent to the following query:

154

10 Sanders -
20 Pernal Sal es
30 Marenghi Myr

Join Notes

DB2 UDB V8.1 Cookbook ©

SELECT V1i.1D ANSVER

, V1. NAMVE ——————————————=—=—=

, MAX(V2.J0B) AS JB I D NAVE JB
FROM STAFF_ Vi v1 e eeemeae e oo
LEFT OQUTER JO N 10 Sanders -

STAFF_V2 V2 20 Pernal Sal es

ON Vi.ID = V2.ID 30 Marenghi Myr
GROUP BY V1.1D

, V1. NAME

ORDER BY V1.1D ;
Figure 446, Same as prior query - using join and GROUP BY

The above query is rather misleading because someone unfamiliar with the data may not un-
derstand why the NAME field isin the GROUP BY. Obvioudly, it is not there to remove any
rows, it smply needs to be there because of the presence of the MAX function. Therefore, the
preceding query is better because it is much easier to understand. It is also probably more
efficient.

CASE Usage

The SELECT expression can be placed in a CASE statement if needed. To illustrate, in the
following query we get the JOB from the V2 view, except when the person is a manager, in
which case we get the NAME from the corresponding row in the V1 view:

SELECT V2.1D ANSVER
, CASE —==========
WHEN V2.J0B <> ' Myr’ ID J2
THEN V2. 90B e eeea e
ELSE (SELECT V1. NAMVE 20 Sal es
FROM STAFF_V1 V1 30 derk
WHERE V1.ID = V2.1D) 30 Mar enghi
END AS J2 40 Sal es
FROM STAFF_V2 V2 50 -
ORDER BY V2.1D
, J2;

Figure 447, Sample Views used in Join Examples
Multiple Columns

If you want to retrieve two columns using this type of join, you need to have two independent
nested table expressions:

SELECT V2.1D
,V2.J0B
, (SELECT
FROM
VHERE
, (SELECT
FROM
VHERE
FROM STAFF_V2
ORDER BY V2.1D
, V2. JOB;

Figure 448, Outer Join donein SELECT, 2 columns

V1. NAVE
STAFF V1 V1

V2.1D = VI1.1D)
LENGTH(V1. NAVE) AS N2

STAFF_V1 V1
V2.1D = V1.1D)
V2

20 Sal es Pernal 6
30 Cerk Marenghi 8
30 Mr Marenghi 8
40 Sal es - -
50 Myr - -

An easier way to do the above isto write an ordinary left outer join with the joined columns
inthe SELECT list. Toillustrate this, the next query islogically equivalent to the prior:

Joins

155

Graeme Birchall ©

SELECT V2.1 D ANSVER
,V2.J0B ————=—————————————=——=—
, V1. NAME 1D JOB NAME N2
" LENGTH(V1. NAVE) AS N2 B -
FROM STAFF_V2 V2 20 Sal es Pernal 6
LEFT QUTER JO N 30 Cerk Marenghi 8
STAFF_V1 Vi 30 Myr Marenghi 8
ON V2.1D = V1.I1D 40 Sal es - -
ORDER BY V2.1D 50 Myr - -
, V2. JOB;

Figure 449, Outer Join done in FROM, 2 columns
Column Functions

Thisjoin style lets one easily mix and match individual rows with the results of column func-
tions. For example, the following query returns arunning SUM of the ID column:

SELECT V1.1D ANSVER
, V1. NAMVE ——=—=—=—=——=—=—=—=—=—=—=—====
, (SELECT SUM X1. D) I D NAMVE SUM I D
FROM STAFF_V1 X1 R
VWHERE X1.I1D <= V1.ID 10 Sanders 10
)AS SUM I D 20 Pernal 30
FROM STAFF_V1 Vi1 30 Mar enghi 60
ORDER BY V1.1D
, V2. JOB;

Figure 450, Running total, using JOIN in SELECT

An easier way to do the same as the above isto use an OLAP function:

SELECT V1.1D ANSVEER
, SUM | D) OVER(ORDER BY ID) AS SUM.ID I D NAME SUM | D
FROM STAFF_V1 Vi1 e e
ORDER BY V1. 1D 10 Sanders 10
20 Pernal 30
30 Marenghi 60

Figure 451, Running total, using OLAP function

Predicates and Joins, a Lesson

Imagine that one wantsto get al of therowsin STAFF_V1, and to also join those matching
rowsin STAFF_V2 where the JOB beginswith an 'S’

STAFF_V1 STAFF_V2 ANSVEER
TR O + ISR + - ——————————=—=
| 1 D] NAME | |1DJoB | QUTER-JO N CRITERIA | D NAMVE JOB
I . | B e g mm e m e memes mmm-a

| 10| Sanders | | 20| Sal es | V1.1D = V2.1D 10 Sanders -
| 20| Per nal | | 30| A erk | V2.JOB LIKE ' S% 20 Pernal Sal es
| 30| Mar enghi | | 30| Myr | 30 Marenghi -
AR + | 40| Sal es |

|50 Mgr |

B R +

Figure 452, Outer join, with WHERE filter

Thefirst query below gives the wrong answer. It is wrong because the WHERE is applied
after the join, so eliminating some of the rowsin the STAFF_V1 table:

156 Join Notes

DB2 UDB V8.1 Cookbook ©

SELECT V1.1D ANSVEER (WRONG)
,V2.J0B | D NAME JOB
FROM STAFF_V1 v1I e e oo
LEFT QUTER JO N 20 Pernal Sal es
STAFF_V2 V2
ON V1.1D = V2.1D

VHERE V2.JOB LI KE ' S%
ORDER BY V1.I1D
, V2. JOB;

Figure 453, Outer Join, WHERE done after - wrong

In the next query, the WHERE is moved into a nested table expression - so it is done before
the join (and against STAFF_V2 only), thus giving the correct answer:

SELECT V1.1D ANSVER
,V2.J0B | D NAME JOB
FROM STAFF V1 V1 Ll il -
LEFT OUTER JO N 10 Sanders -
(SELECT * 20 Pernal Sal es
FROM STAFF_V2 30 Marenghi -
WHERE JOB LIKE ' S%
)AS V2
ON V1.1D = V2.1D
ORDER BY V1.1D
, V2. JOB;

Figure 454, Outer Join, WHERE done before - correct

The next query does the join in the SELECT phrase. In this case, whatever predicates arein
the nested table expression apply to STAFF_V2 only, so we get the correct answer:

SELECT V1i.1D ANSVEER
, V1. NAME ——————————————=—=—=
, (SELECT V2.J0B I D NAVE JOB
FROM STAFF V2 V2 o LTI
WHERE V1.I1D = V2.1D 10 Sanders -
AND V2.JOB LIKE 'S%) 20 Pernal Sal es
FROM STAFF_V1 Vi 30 Marenghi -
ORDER BY V1.1D
, JOB;

Figure 455, Outer Join, WHERE done independently - correct

Joins - Things to Remember

¢ Youget nullsin an outer join, whether you want them or not, because the fields in non-
matching rows are set to null. If they bug you, use the COALESCE function to remove
them. See page 152 for and example.

* Fromalogical perspective, all WHERE conditions are applied after the join. For per-
formance reasons, DB2 may apply some checks before the join, especialy in an inner
join, where doing this cannot affect the result set.

« All WHERE conditions that join tables act asif they are doing an inner join, even when
they are written in an outer join.

¢ TheON checksin afull outer join never remove rows. They simply determine what rows
are matching versus not (see page 146). To eliminate rows in an outer join, one must use
aWHERE condition.

e TheON checksin apartial outer join work differently, depending on whether they are
against fields in the table being joined to, or joined from (see page 144).

Joins 157

Graeme Birchall ©

e A Cartesian Product is not an outer join. It isa poorly matching inner join. By contrast, a
true outer join gets both matching rows, and non-matching rows.

e The NODENUMBER and PARTITION functions cannot be used in an outer join. These
functions only work on rowsin real tables.

¢ When thejoin isdefined in the SELECT part of the query (see page 153), it is done after
any other joins and/or sub-queries specified in the FROM phrase. And it acts asif itisa
left outer join.

158 Join Notes

DB2 UDB V8.1 Cookbook ©

Sub-Query

Sub-queries are hard to use, tricky to tune, and often do some strange things. Consequently, a
lot of peopletry to avoid them, but thisis stupid because sub-queries are redly, really, useful.
Using arelational database and not writing sub-queriesis almost as bad as not doing joins.

A sub-query is a specia type of full-select that is used to relate one table to another without
actually doing ajoin. For example, it lets one select all of the rows in one table where some
related value exists, or does not exist, in another table.

Sample Tables

Two tables will be used in this section. Please note that the second sampl e table has a mixture
of null and not-null values:

CREATE TABLE TABLE1 TABLE1 TABLE2

(T1A CHAR(1) NOT NULL PR 4 e +

, T1B CHAR(2) NOT NULL | TIA| T1B| | T2A| T2B| T2C|

, PRIMARY KEY(T1A)); [<ol o] f=me]-mn]---]|

COMM T; [A |[AA] A |[A |A |
[B |BB| |B |A | I

CREATE TABLE TABLE2 [C [CC| #--crmeemnn- +

(T2A CHAR(1) NOT NULL e + "-" = null

,T2B CHAR(1) NOT NULL

, T2C CHAR(1)) ;

I NSERT | NTO TABLEL VALUES (A ,"AA"),('B,'BB),('C,'CC);
I NSERT | NTO TABLE2 VALUES ("A',"A ,"A),(’B,” A, NULL);

Figure 456, Sample tables used in sub-query examples

Sub-query Flavours

Sub-query Syntax

A sub-query compares an expression against a full-select. The type of comparison doneisa

function of which, if any, keyword is used:
F expression — =, <, >, <> etc E J ('subselect) 4}

SOME
ANY
ALL

EXISTS

. nor v
Figure 457, Sub-query syntax diagram

The result of doing a sub-query check can be any one of the following:
¢ True, inwhich case the current row being processed is returned.

¢ False, in which case the current row being processed is rgjected.

¢ Unknown, whichisfunctionally equivalent to false.

e A SQL error, dueto an invalid comparison.

Sub-Query 159

Graeme Birchall ©

No Keyword Sub-Query

One does not have to provide a SOME, or ANY, or IN, or any other keyword, when writing a
sub-query. But if one does not, there are three possible results:

¢ If norow in the sub-query result matches, the answer isfalse.
e If onerow in the sub-query result matches, the answer istrue.
e If more than one row in the sub-query result matches, you get a SQL error.

In the example below, the T1A field in TABLEL is checked to seeif it equals the result of the
sub-query (against T2A in TABLE?2). For the value "A" there is a match, while for the values
"B" and "C" thereis no match:

SELECT * ANSVER
FROM TABLE1 =======
VHERE TI1A = T1A T1B
(SELECT T2A e e
FROMV TABLE2 A AA
WHERE T2A = 'A);
SUB- Q TABLE1 TABLE2
RESLT R + Hememmem---- +
+---+ | TIA| T1B| | T2A] T2B| T2C
| T2A [---]---1 [---]---]---]
[---] [A [AA] |A |A |A |
[A | [B [BB| [B [A | - |
+---+ |C |CC| H+----------- +
+omem - + "-" = null

Figure 458, No keyword sub-query, works

The next example gets a SQL error. The sub-query returns two rows, which the "=I" check
cannot process. Had an "= ANY" or an "= SOME" check been used instead, the query would
have worked fine:

SELECT * ANSVEER

FROM TABLE1 =======

VHERE TI1A = <error>

(SELECT T2A
FROM TABLE2) ;

SUB- Q TABLE1 TABLE2
RESLT R + Hememmem---- +
+---+ | TIA| T1B| | T2A] T2B| T2C
| T2A] [---]---1 [---]---1]---]
[---] [A [AA] |A |A |A |
[A | [B [BB| [B [A | - |
| B | |C | CC | L +
+---+ Foeeoaan + "-" = null

Figure 459, No keyword sub-query, fails

NOTE: There is almost never a valid reason for coding a sub-query that does not use an
appropriate sub-query keyword. Do not do the above.

SOME/ANY Keyword Sub-Query
When a SOME or ANY sub-query check is used, there are two possible resuilts:

e If any row in the sub-query result matches, the answer istrue.
« If the sub-query result is empty, or al nulls, the answer isfase.

¢ If no value found in the sub-query result matches, the answer is also false.

160 Sub-query Flavours

DB2 UDB V8.1 Cookbook ©

The query below compares the current T1A value against the sub-query result three times.
Thefirst row (i.e. T1A ="A") fails the test, while the next two rows pass:

SELECT * ANSVEER SUB-Q TABLE1 TABLE2
FROM TABLEl ======= RESLT +------- e, +
WHERE T1A > ANY T1A T1B +---+ | T1A T1B| | T2A T2B| T2C
(SELECT T2~ -=- - R et e e et e

FROM TABLE2); B BB [---1 |A |AA] |JA |A |JA |
c cc |[A | B |BB| [B [A | - |
[B | |C |CC| +----------- +

Fo- b oo + "-" = null

Figure 460, ANY sub-query

When an ANY or ALL sub-query check is used with a"greater than" or similar expression (as
opposed to an "equal" or a"not equal" expression) then the check can be considered similar to
evaluating the MIN or the MAX of the sub-query result set. The following table shows what
type of sub-query check equates to what type of column function:

SUB- QUERY CHECK EQUI VALENT COLUWN FUNCTI ON

> ANY(sub-qurey) > M NI MM sub-query resul ts)
< ANY(sub- query) < MAXI MUM sub- query results)
> ALL(sub-query) > MAXI MUM sub- query results)
< ALL(sub-query) < M N MUM sub-query results)

Figure 461, ANY and ALL vs. column functions

All Keyword Sub-Query

When an ALL sub-query check is used, there are two possible results:

e If dl rowsin the sub-query result match, the answer is true.

e If there are no rows in the sub-query result, the answer is also true.

« If any row in the sub-query result does not match, or is null, the answer isfalse.

Below is atypical example of the ALL check usage. Observe that a TABLEL row is returned
only if the current T1A value equals al of the rows in the sub-query result:

SELECT * ANSVER SUB- Q
FROM TABLElL ======= RESLT
WHERE TI1A = ALL TIA TIB +---+
(SELECT T2B Lol | T2B|

FROM TABLE2 A AA [---]

WHERE T2B >= "A); [A |

[A |

+-- -+

Figure 462, ALL sub-query, with non-empty sub-query result

When the sub-query result consists of zero rows (i.e. an empty set) then all rows processed in
TABLEL are deemed to match:

SELECT * ANSVER SUB- Q
FROM TABLE1L ======= RESLT
WHERE T1A = ALL TIA TIB +---+
(SELECT T2B Ll | T2B|
FROM TABLE2 A AA [---]
WHERE T2B >= ' X); B BB —_—

C CC

Figure 463, ALL sub-query, with empty sub-query result

The above may seem alittle unintuitive, but it actually makes sense, and isin accordance with
how the NOT EXISTS sub-query (see page 163) handles a similar situation.

Sub-Query 161

Graeme Birchall ©

Imagine that one wanted to get arow from TABLE1 where the T1A value matched all of the
sub-query result rows, but if the latter was an empty set (i.e. no rows), one wanted to get a
non-match. Try this:

SELECT * ANSWER
FROM TABLE1 —m————
VWHERE T1A = ALL 0 rows
(SELECT T2B

FROM TABLE2 SQ #1 SQ #2 TABLEL TABLE2
WHERE T2B >= 'X') RESLT RESLT +------- + o Aemmmmemeoo- +
AND 0 <> +---+ +---+ |TLA T1B| |T2A T2B| T2C
(SELECT COUNT(*) [T2B] [(*)| [---|---1 [|---]---]---]
FROM TABLE2 [---1 [|---1 |A |AA] |A |A |A |
WHERE T2B >= ' X'); +---+ |0 | |B [BB]| |B |A | - |
+---+ |C |[CC| +----------- +

Figure 464, ALL sub-query, with extra check for empty set

Two sub-queries are done above: The first looks to seeif all matching values in the sub-query
equal the current T1A value. The second confirms that the number of matching valuesin the
sub-query is not zero.

WARNING: Observe that the ANY sub-query check returns false when used against an
empty set, while a similar ALL check returns true.

EXISTS Keyword Sub-Query

So far, we have been taking a value from the TABLEL table and comparing it against one or
more rows in the TABLEZ2 table. The EXISTS phrase does not compare values against rows,
rather it simply looks for the existence or non-existence of rows in the sub-query result set:

* If the sub-query matches on one or more rows, the result is true.
¢ If the sub-query matches on no rows, the result is false.

Below is an EXISTS check that, given our sample data, always returns true:

SELECT * ANSWER TABLE1 TABLE2
FROM TABLEl1 ======= 4------- e, +
WHERE EXI STS T1A T1B | T1A| T1B| | T2A| T2B| T2C
(SELECT* -l [P et P ot ey
FROM TABLE2); A A A |AA] |A |A |A |
B BB |B |BB| |B |A | - |
C CC |C |CC| +----------- +

Fommm--- + "-" = null

Figure 465, EXISTS sub-query, always returns a match
Below is an EXISTS check that, given our sample data, always returns false:

SELECT * ANSVER

FROM TABLE1L ======

WHERE EXI STS 0 rows
(SELECT *

FROM TABLE2
VWHERE T2B >= 'X');

Figure 466, EXISTS sub-query, always returns a non-match

When using an EXISTS check, it doesn't matter what field, if any, is selected in the sub-query
SELECT phrase. What isimportant is whether the sub-query returns arow or not. If it does,
the sub-query returns true. Having said this, the next query is an example of an EXISTS sub-
guery that will always return true, because even when no matching rows are found in the sub-
query, the SELECT COUNT(*) statement will return something (i.e. a zero). Arguably, this
query islogicaly flawed:

162 Sub-query Flavours

DB2 UDB V8.1 Cookbook ©

SELECT * ANSVER TABLE1 TABLE2
FROM TABLEL ======= 4------- + Hememmem---- +
VHERE EXI STS T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT COUNT(*) === -- [---]---1 |---]---]---]|
FROMV TABLE2 A AA | A | AA | [A A A |
WHERE T2B = 'X); B BB | B | BB | [B |A | - |
C CcC |C | CC | Fommmmeem e +

Fo---- - + "-" = null

Figure 467, EXISTS sub-query, always returns a match

NOT EXISTS Keyword Sub-query

The NOT EXISTS phrases looks for the non-existence of rows in the sub-query result set:
e If the sub-query matches on no rows, the result is true.

« If the sub-query hasrows, the result isfalse.

We can use aNOT EXISTS check to create something similar to an ALL check, but with one
very important difference. The two checks will handle nulls differently. To illustrate, consider
the following two queries, both of which will return arow from TABLEZ1 only when it equals
all of the matching rowsin TABLEZ2:

SELECT * ANSWERS TABLElL TABLE2
FROM TABLEl ======= 4------- e, +
WHERE NOT EXI STS T1A T1B |T1A| T1B| | T2A| T2B| T2C|
(SELECT > ~ ~ --- - [---]---1 [---]---1]---]
FROM TABLE2 A AN |A |AA]| |A |A |A |
WHERE T2C >= ' A [B |BB| B [A | - |
AND T2C <> T1A); |[C |CC| +----------- +
Foemeo s + "' = null
SELECT *

FROM TABLEl

WHERE TI1A = ALL
(SELECT T2C
FROM TABLE2
VWHERE T2C >= "A');

Figure 468, NOT EXISTSvs. ALL, ignore nulls, find match

The above two queries are very similar. Both define a set of rowsin TABLE2 where the T2C
value is greater than or equal to "A", and then both look for matching TABLEZ2 rows that are
not equal to the current T1A value. If arow isfound, the sub-query isfalse.

What happens when no TABLE2 rows match the ">=" predicate? As is shown below, both of
our test queries treat an empty set as a match:

SELECT * ANSWERS TABLE1l TABLE2
FROM TABLE1 —————== 4o oo oo e +
VHERE NOT EXI STS T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT* = Ll et Pt A ot P Py
FROM TABLE2 A AA | A | AA | [A A A |
WHERE T2C >= 'X B BB | B | BB | [B |A | - |
AND T2C <> T1A); C CC |C |CC| +------m-n-- +
t------- + "-" = null
SELECT *

FROM TABLEl

WHERE TI1A = ALL
(SELECT T2C
FROM TABLE2
VWHERE T2C >= ' X')

Figure 469, NOT EXISTSvs. ALL’, ignore nulls, no match

Sub-Query 163

Graeme Birchall ©

One might think that the above two queries are logically equivalent, but they are not. Asis
shown below, they return different results when the sub-query answer set can include nulls:

SELECT * ANSWER TABLE1l TABLE2
FROM TABLEl ======= 4------- e, +
WHERE NOT EXI STS T1A T1B | T1A| T1B| | T2A T2B| T2C]
(SELECT = oo R P B e P
FROM TABLE2 A A |A |AA] |A |A |A |
VHERE T2C <> T1A); B |BB| |[B |A | - |
|C |CC| +----------- +
Fommm--- + "-" = null
SELECT * ANSVER
FROM TABLEl =======
VHERE TI1A = ALL no rows
(SELECT T2C

FROM TABLE2);
Figure 470, NOT EXISTSvs. ALL, process nulls

A sub-query can only return true or false, but aDB2 field value can either match (i.e. be true),
or not match (i.e. be false), or be unknown. It isthe differing treatment of unknown values
that is causing the above two queriesto differ:

¢ Inthe ALL sub-query, each valuein T1A is checked against all of the valuesin T2C. The
null value is checked, deemed to differ, and so the sub-query always returns false.

¢ Inthe NOT EXISTS sub-query, each valuein T1A is used to find those T2C values that
are not equal. For the T1A values"B" and "C", the T2C value "A" does not equal, so the
NOT EXISTS check will fail. But for the T1A value"A", there are no "not equal” values
in T2C, because a null value does not "not equal” aliteral. So the NOT EXISTS check
will pass.

The following three queries list those T2C values that do "not equal" agiven T1A vaue:

SELECT * SELECT * SELECT *

FROM TABLE2 FROVM TABLE2 FROM TABLE2
WHERE T2C <> "A’; VWHERE T2C <> 'B’; VWHERE T2C <> 'C;
ANSVER ANSVEER ANSVEER

T2A T2B T2C T2A T2B T2C T2A T2B T2C

no rows A A A A A A

Figure 471, List of valuesin T2C <> T1A value

To make aNOT EXISTS sub-query that islogically equivalent to the ALL sub-query that we
have used above, one can add an additional check for null T2C values:

SELECT * ANSVEER TABLE1 TABLE2
FROM TABLEl ======= 4------- e, +
WHERE NOT EXI STS no rows |T1A| T1B| | T2A| T2B| T2C
(SELECT * [---]---1 [---]---]---]
FROM TABLE2 [A |AA]| |A |A |A |
WHERE T2C <> T1A [B |[BB| [B [A | - |
OR T2C I'S NULL); [C [CC| H---memmm--- +

ERREEEE + "-" = null

Figure 472, NOT EXISTS- sameas ALL

One problem with the above query is that it is not exactly obvious. Another isthat the two
T2C predicates will have to be fenced in with parenthesisif other predicates (on TABLE2)
exist. For these reasons, use an ALL sub-query when that is what you mean to do.

164 Sub-query Flavours

DB2 UDB V8.1 Cookbook ©

IN Keyword Sub-Query
The IN sub-query check is similar to the ANY and SOME checks:

e If any row in the sub-query result matches, the answer istrue.

e If the sub-query result is empty, the answer isfalse.

« If norow in the sub-query result matches, the answer is also false.

e If dl of the values in the sub-query result are null, the answer isfalse.

Below is an example that compares the T1A and T2A columns. Two rows match:

SELECT * ANSVER TABLE1 TABLE2

FROM TABLE1 ======= 4---c---- e e +
VHERE TI1A IN T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT T2A --- == [---1---] [---]---1---]
FROM TABLE2); A AA | A | AA | [A A A |
B BB | B | BB | [B |A | - |
|C |CC| +----------- +

+o---- - + "-" = null

Figure 473, IN sub-query example, two matches

In the next example, no rows match because the sub-query result is an empty set:

SELECT * ANSVER

FROM TABLEl ======

WHERE TI1A IN 0 rows
(SELECT T2A

FROM TABLE2
VWHERE T2A >= 'X');

Figure 474, IN sub-query example, no matches

TheIN, ANY, SOME, and ALL checks all look for a match. Because one null value does not
equal another null value, having a null expression in the "top" table causes the sub-query to
aways returns false;

SELECT * ANSVERS TABLE2
FRO\A TABLE2 == [TR, -+
WHERE T2C IN T2A T2B T2C | T2A| T2B| T2Q|
(SELECT T2C oo P e By
FROM TABLE2); A A A A |A |A |
B [A | - |
SELECT * oo b
FROM TABLE2 "o = nul
WHERE T2C = ANY
(SELECT T2C

FROM TABLE2);
Figure 475, IN and = ANY sub-query examples, with nulls

NOT IN Keyword Sub-Queries

Sub-queries that ook for the non-existence of arow work largely as one would expect, except
when anull valuein involved. To illustrate, consider the following query, where we want to
seeif the current T1A valueis not in the set of T2C values:

SELECT * ANSVWER TABLE1 TABLE2

FROM TABLEl ====== 4------- e, +
WHERE T1A NOT IN 0 rows | T1A| T1B| | T2A| T2B| T2C]
(SELECT T2C [---]---1 |---1---1---]
FROM TABLE2); |[A |AA] |A |A |A |
[B [BB| [B [A | -]
|[C |CC| +----------- +

Fommm--- + "-" = null

Figure 476, NOT IN sub-query example, no matches

Sub-Query 165

Graeme Birchall ©

Observe that the T1A values"B" and "C" are obviously not in T2C, yet they are not returned.
The sub-query result set contains the value null, which causes the NOT IN check to return
unknown, which equatesto false.

The next example removes the null values from the sub-query result, which then enables the
NOT IN check to find the non-matching values:

SELECT * ANSVER TABLE1 TABLE2

FROM TABLE1 ======= 4------- I +
VWHERE T1A NOT IN T1A T1B | T1A T1B| | T2A] T2B| T2C|
(SELECT T2C ~ --- -- [---]---1 |---]---]---]
FROM TABLE2 B BB | A | AA | [A A A |
WHERE T2C IS NOT NULL); C CcC | B | BB | [B |A | - |
|C |cC| +----------- +

o + "-" = null

Figure 477, NOT IN sub-query example, matches

Another way to find the non-matching values while ignoring any null rows in the sub-query,
isto use an EXISTS check in a correlated sub-query:

SELECT * ANSWER TABLE1 TABLE2
FROM TABLEl ======= 4------- e, +
WHERE NOT EXI STS T1A T1B | T1A| T1B| | T2A| T2B| T2C
(SELCT* = -l [P et P ot ey
FROM TABLE2 B BB |[A |AA] A |A |A |
VWHERE T1A = T20); c ¢ |B |BB| |B |A | -|
|[C |CC| +----------- +
Fommm--- + "-" = null

Figure 478, NOT EXISTS sub-query example, matches

Correlated vs. Uncorrelated Sub-Queries

With the exception of the very last example above, al of the sub-queries shown so far have
been uncorrelated. An uncorrelated sub-query is one where the predicates in the sub-query
part of SQL statement have no direct relationship to the current row being processed in the
"top" table (hence uncorrelated). The following sub-query is uncorrel ated:

SELECT * ANSVER TABLE1 TABLE2

FROM TABLE1 ======= 4---c---- e e +
VHERE TI1A IN T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT T2A --- == [---1---] [---]---1---]
FROM TABLE2); A AA | A | AA | [A |A A |
B BB | B | BB | [B |A | - |
|C |CC| +----------- +

+o---- - + "-" = null

Figure 479, Uncorrelated sub-query

A correlated sub-query is one where the predicates in the sub-query part of the SQL statement
cannot be resolved without reference to the row currently being processed in the “top" table
(hence correlated). The following query is correlated:

SELECT * ANSVER TABLE1 TABLE2

FROM TABLE1 ======= 4---c---- e e +
VHERE TI1A IN T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT T2A --- == [---1---] [---]---1---]
FROM TABLEZ2 A AA | A | AA | [A A A |
VWHERE T1A = T2A); B BB | B | BB | [B |A | - |
|C |CC| +----------- +

+o---- - + "-" = null

Figure 480, Correlated sub-query

Below is another correlated sub-query. Because the same table is being referred to twice, cor-
relation names have to be used to delineate which column belongs to which table:

166 Sub-query Flavours

DB2 UDB V8.1 Cookbook ©

SELECT * ANSVER TABLE2
FROM TABLE2 AA —========== - - - -------- +
WHERE EXI STS T2A T2B T2C | T2A| T2B| T2C]
(SELECT * oo PR P
FROM TABLE2 BB A A A |A |A [A |
WHERE AA. T2A = BB.T2B); 1B |A | - |
o +
"ot = null

Figure 481,Correlated sub-query, with correlation names
Which is Faster

In general, if thereis a suitable index on the sub-query table, use a correlated sub-query. Else,
use an uncorrelated sub-query. However, there are several very important exceptions to this
rule, and some queries can only be written one way.

NOTE: The DB2 optimizer is not as good at choosing the best access path for sub-queries
as it is with joins. Be prepared to spend some time doing tuning.

Multi-Field Sub-Queries

Imagine that you want to compare multiple items in your sub-query. The following examples
use an IN expression and a correlated EXISTS sub-query to do two equality checks:

SELECT * ANSVER TABLE1 TABLE2
FROM TABLE1 ====== 4------- R I +
WHERE (T1A, T1B) IN 0 rows | T1A| T1B| | T2A] T2B| T2C|
(SELECT T2A, T2B [---1]---] [---]---1---]
FROMV TABLE2) ; | A | AA | [A A A |
[B [BB| [B [A | - |
|C |CC| +----------- +
+------- + - = null
SELECT * ANSVEER
FROM TABLE1 ======
VHERE EXI STS 0 rows
(SELECT *

FROM TABLE2
VWHERE T1A = T2A
AND TiB = T2B);

Figure 482, Multi-field sub-queries, equal checks

Observe that to do amultiple-value IN check, you put the list of expressions to be compared
in parenthesis, and then select the same number of items in the sub-query.

An IN phraseislimited because it can only do an equality check. By contrast, use whatever
predicates you want in an EXISTS correlated sub-query to do other types of comparison:

SELECT * ANSVER TABLE1 TABLE2
FROM TABLE1 ======= 4---c---- e e +
VHERE EXI STS T1A T1B | T1A T1B| | T2A] T2B| T2C
(SELECT * -l et ot Rt o
FROMV TABLE2 A AA | A | AA | [A A A |
VWHERE T1A = T2A B BB | B | BB | [B |A | - |
AND T1B >= T2B); [C |CC| #--m-mmmmm--- +

t------- + "-" = null

Figure 483, Multi-field sub-query, with non-equal check

Nested Sub-Queries

Some business questions may require that the related SQL statement be written as a series of
nested sub-queries. In the following example, we are after al employeesin the EMPLOY EE
table who have a salary that is greater than the maximum salary of all those other employees
that do not work on a project with a name beginning 'MA'.

Sub-Query 167

Graeme Birchall ©

SELECT EMPNO ANSVEER
, LASTNAVE —=—=—=—=—==—=—=—=—=—=—=—=—=—=—=========
, SALARY EMPNO LASTNAME SALARY
FROM EMPLOYEE Lo CLToLTTL LTIl
WHERE SALARY > 000010 HAAS 52750. 00
(SELECT MAX(SALARY) 000110 LUCCHESSI 46500. 00

FROM EMPLOYEE
WHERE EMPNO NOT | N
(SELECT EMPNO
FROM EMP_ACT
WHERE PRCINO LI KE ' MA%))
ORDER BY 1;

Figure 484, Nested Sub-Queries

__|]
Usage Examples

In this section we will use various sub-queries to compare our two test tables - looking for
those rows where none, any, ten, or all values match.

Beware of Nulls

The presence of null values greatly complicates sub-query usage. Not allowing for them when
they are present can cause one to get what is arguably awrong answer. And do not assume
that just because you don't have any nullable fields that you will never therefore encounter a
null value. The DEPTNO table in the Department table is defined as not null, but in the fol-
lowing query, the maximum DEPTNO that is returned will be null:

SELECT COUNT(*) AS #RON5 ANSVEER

, MAX(DEPTNO) AS MAXDPT —————=——=—=—=—=—==
FROM DEPARTMVENT #ROWS MAXDEPT
WHERE DEPTNAME LIKE 'Z% eeeee e

Figure 485, Getting a null value froma not null field

True if NONE Match

Find al rowsin TABLEL where there are no rowsin TABLEZ2 that have a T2C value equa to
the current T1A valueinthe TABLEL table:

SELECT * TABLE1 TABLE2
FROM TABLEL T1 e b ool +
WHERE 0 = | TIA| T1B| | T2A| T2B| T2Q|
(SELECT COUNT(*) ool -nm] -] --]---]
FROM TABLE2 T2 [A [MA]| [A [A [A |
WHERE T1.T1A = T2.720Q); [B [BB| [B |A | - |
[C [CC| Hr-ecmemm-n- +

SELECT * ol Yoo = nuld

FROM TABLEl1l T1
VWHERE NOT EXI STS

(SELECT * ANSVEER
FROM TABLE2 T2 =======
VWHERE T1.T1A = T2.T20); T1A T1B
SELECT * B BB
FROM TABLEl c CC
WHERE T1A NOT IN
(SELECT T2C

FROM TABLE2
WHERE T2C IS NOT NULL);

Figure 486, Sub-queries, true if none match

168 Usage Examples

DB2 UDB V8.1 Cookbook ©

Observe that in the last statement above we eliminated the null rows from the sub-query. Had
this not been done, the NOT IN check would have found them and then returned a result of
"unknown" (i.e. false) for al of rowsin the TABLE1A table.

Using a Join

Another way to answer the same problem is to use aleft outer join, going from TABLEL to
TABLE2 while matching on the T1A and T2C fields. Get only those rows (from TABLEL)
where the corresponding T2C valueis null:

SELECT T1.* ANSVEER
FROM TABLEl T1 =======
LEFT QUTER JO N T1A T1B

TABLE2 T2 e e
ON T1. TIA = T2.T2C B BB
WHERE T2.T2C I'S NULL; c CC

Figure 487, Outer join, trueif none match

True if ANY Match

Find all rowsin TABLE1 where there are one, or more, rowsin TABLE2 that have aT2C
value equal to the current T1A value:

SELECT * TABLE1 TABLE2

FROM TABLELl T1 oo b e +

WHERE EXI STS | TLA| T1B| | T2A| T2B| T2C
(SELECT R PR I R R
FROM TABLE2 T2 [A [AA] |A |A |A |
WHERE T1.T1A = T2.T20Q); B [BB| [B |A | - |

|C |CC| +----------- +

SELECT * Fo-m-m - + "-" = null

FROM TABLE1 T1

WHERE 1 <=
(SELECT COUNT(*) ANSVER
FROM TABLE2 T2 =======
VWHERE T1.T1A = T2.T20); T1A T1B

SELECT * A AA

FROM TABLEl

WHERE TI1A = ANY
(SELECT T2C
FROM TABLE2);

SELECT *

FROM TABLEl

VWHERE T1A = SOME
(SELECT T2C
FROM TABLE2);

SELECT *

FROM TABLEl1l

WHERE TI1A IN
(SELECT T2C
FROM TABLE2);

Figure 488, Sub-queries, true if any match

Of all of the above queries, the second query is almost certainly the worst performer. All of
the others can, and probably will, stop processing the sub-query as soon asit encounters a
single matching value. But the sub-query in the second statement has to count all of the
matching rows before it return either atrue or false indicator.

Sub-Query 169

Graeme Birchall ©

Using a Join

This question can aso be answered using an inner join. The trick isto make alist of distinct
T2C values, and then join that list to TABLEL using the T1A column. Several variations on
this theme are given below:

WTH T2 AS TABLE1 TABLE2
(SELECT DI STI NCT T2C S e +
FROM TABLE2 | TLA| T1B| | T2A| T2B| T2C|
) It Bl A) e e
SELECT T1. * |A [AA] A A |A |
FROM TABLEl1l T1 |B |BB|] |B |A | - |
, T2 |C |CC| +-----------
WHERE T1.T1A = T2.T2C, . + "-" = null
SELECT T1.*
FROM TABLEl1l T1 ANSVER
, (SELECT DI STI NCT T2C =======
FROM TABLE2 T1A T1B
)AS T2
VWHERE T1. T1A = T2. T2C, A AA
SELECT T1.*
FROM TABLEl1l T1
I NNER JO N
(SELECT DI STI NCT T2C
FROM TABLE2
AS T2
ON T1. T1A = T2. T2C,

Figure 489, Joins, true if any match

True if TEN Match

Find al rowsin TABLEL where there are exactly ten rowsin TABLEZ that have a T2B value
equal to the current T1A valuein the TABLEL table:

SELECT * TABLE1 TABLE2
FROM TABLE1l T1 oo 4 Aeemmm e +
WHERE 10 = | TLA| T1B| | T2A| T2B| T2C|
(SELECT COUNT(*) S U D
FROM TABLE2 T2 |A |AA] |JA |JA |A |
VWHERE T1.T1A = T2.T2B); |B |BB| |B |A | - |
|C |CC| +----------- +
SELECT * fomm - + "-" = null
FROM TABLE1l
WHERE EXI STS
(SELECT T2B ANSVER
FROM TABLE2 ======
VWHERE T1A = T2B 0 rows
GROUP BY T2B
HAVING COUNT(*) = 10);
SELECT *
FROM TABLE1l
WHERE T1A IN
(SELECT T2B
FROM TABLE2
GROUP BY T2B
HAVING COUNT(*) = 10);

Figure 490, Sub-queri

es, true if ten match (1 of 2)

Thefirst two queries above use a correlated sub-query. The third is uncorrelated. The next
guery, which is also uncorrelated, is guaranteed to befuddle your coworkers. It uses a multi-
field IN (see page 167 for more notes) to both check T2B and the count at the same time:

170

Usage Examples

DB2 UDB V8.1 Cookbook ©

SELECT * ANSVER
FROM TABLEl1l ======
VWHERE (T1A, 10) IN 0 rows

(SELECT T2B, COUNT(*)
FROM TABLE2
GROUP BY T2B):

Figure 491, Sub-queries, true if ten match (2 of 2)
Using a Join

To answer this generic question using ajoin, one simply builds adistinct list of T2B values
that have ten rows, and then joins the result to TABLEL:

WTH T2 AS TABLE1 TABLE2
(SELECT T2B S T +
FROM TABLE2 | TLA| T1B| | T2A] T2B| T2¢|
CROUP BY T2B [---1---1 |---1---]---]
HAVING COUNT(*) = 10 [A |[AA]| |A [A |A |
) [B |BB| B [A | -|
SELECT T1.* |C |CC| +----------- +
FROM TABLEL T1 S + "o = null
, T2
WHERE T1.T1A = T2. T2B;
ANSVEER

SELECT T1.* ======
FROM TABLEl T1 0 rows

, (SELECT T2B
FROM TABLE2

GROUP BY T2B
HAVING COUNT(*) = 10
) AS T2
WHERE ~ T1.T1A = T2.T2B;
SELECT T1.*
FROM TABLEL T1
I NNER JO N
(SELECT T2B
FROM TABLE2
GROUP BY T2B
HAVING COUNT(*) = 10
)AS T2
N T1. T1A = T2. T2B;

Figure 492, Joins, true if ten match

True if ALL match

Find all rowsin TABLEL where all matching rowsin TABLE2 have aT2B value equal to the
current T1A value in the TABLEL table. Before we show some SQL, we need to decide what
to do about nulls and empty sets:

¢ When nulls are found in the sub-query, we can either deem that their presence makes the
relationship false, which iswhat DB2 does, or we can exclude nulls from our analysis.

* When there are no rows found in the sub-query, we can either say that the relationship is
false, or we can do as DB2 does, and say that the relationship is true.

See page 161 for a detailed discussion of the above issues.

The next two queries use the basic DB2 logic for dealing with empty sets; In other words, if
no rows are found by the sub-query, then the relationship is deemed to be true. Likewise, the
relationship is also true if all rows found by the sub-query equal the current T1A value:

Sub-Query 171

Graeme Birchall ©

SELECT * TABLEL TABLE2
FROM TABLE1 PR b ool +
WHERE T1A = ALL | TIA| T1B| | T2A] T2B| T2C|
(SELECT T2B [---]---] |---]---]---
FROM TABLE2); [A [AA] [A |A |A |
(B |BB| [B |A | - |
SELECT * |C |CC| +----------- +
FROM TABLEl Lol Lo sl
WHERE NOT EXI STS
(SELECT * ANSVER
FROM TABLE2 —======
VWHERE T1A <> T2B); T1A T1B
A AA

Figure 493, Sub-queries, trueif all match, find rows

The next two queries are the same as the prior, but an extra predicate has been included in the
sub-query to make it return an empty set. Observe that now all TABLE1 rows match:

SELECT * ANSVER
FROM TABLElL =======
WHERE TI1A = ALL T1A T1B
(SELECT T2B il
FROM TABLE2 A AA
WHERE T2B >= ' X'); B BB
C cc
SELECT *
FROM TABLEL
WHERE NOT EXI STS
(SELECT *
FROM TABLE2
WHERE TI1A <> T2B
AND T2B >= 'X);

Figure 494, Sub-queries, trueif all match, empty set
False if no Matching Rows

The next two queries differ from the above in how they address empty sets. The queries will
return arow from TABLEL if the current T1A value matches all of the T2B values found in
the sub-query, but they will not return arow if no matching values are found:

SELECT * TABLE1 TABLE2
FROM TABLE1L
WHERE TI1A = ALL
(SELECT T2B
FROM TABLE2
WHERE T2B >= ' X')
AND 0 <>
(SELECT
FROM
WWHERE

COUNT(*)
TABLE2
T2B >= ' X);

SELECT *
FROM TABLElL
WHERE T1A IN
(SELECT
FROM TABLE2
WHERE T2B >= ' X
HAVI NG COUNT(DI STINCT T2B) = 1);

Figure 495, Sub-queries, trueif all match, and at least one value found

Both of the above statements have flaws: The first processes the TABLE2 table twice, which
not only involves double work, but also requires that the sub-query predicates be duplicated.
The second statement is just plain strange.

MAX(T2B)

172 Usage Examples

DB2 UDB V8.1 Cookbook ©

Union, Intersect, and Except

A UNION, EXCEPT, or INTERCEPT expression combines sets of columns into new sets of
columns. An illustration of what each operation does with a given set of datais shown below:

R1 R1 R1 R1 R1 R1
UNTON UNION | NTERSECT | NTERSECT EXCEPT EXCEPT
R2 ALL R2 ALL R2 ALL
Rl R2 R2 R2 R2
A A A A A A E A
A A B A B A C
A B C A C B C
B B D A B E
B B E A C
c C B
C D B
C B
E B
B
C
C
C
C
D
E

Figure 496, Examples of Union, Except, and Intersect

WARNING: Unlike the UNION and INTERSECT operations, the EXCEPT statement is not
commutative. This means that "A EXCEPT B" is not the same as "B EXCEPT A".

Syntax Diagram

»_[SELECT statement j—L UNION | SELECT statement]_}
VALUES statement — UNION ALL L VALUES statement

| EXCEPT

| EXCEPT ALL
| INTERSECT
L INTERSECT ALL

Figure 497, Union, Except, and Intersect syntax

Sample Views
CREATE VIEWRL (R1)
AS VALUES ("A), (A), ("A),('B),("B),("C),.("C),.("C).("E);
CREATE VIEWR2 (R2)

AS VALUES (A), (CA),('B),('B),('B),('C),('D); ANSVER
SELECT Rl RL R2
FROM RL .-
ORDER BY RI; A A

A A
SELECT R2 A B
FROM R2 B B
ORDER BY R2; B B

cC C

C D

C

E

Figure 498, Query sample views

Union, Intersect, and Except 173

Graeme Birchall ©

__|]
Usage Notes

Union & Union All

A UNION operation combines two sets of columns and removes duplicates. The UNION
ALL expression does the same but does not remove the duplicates.

SELECT R1 Rl R2 UNI ON UNI ON ALL
FROM R1 - - - - ===== =========
UNI ON A A A A
SELECT R2 A A B A
FROM R2 A B C A
ORDER BY 1, B B D A
B B E A
c C B
SELECT R1 C D B
FROM R1 C B
UNI ON ALL E B
SELECT R2 B
FROM R2 C
ORDER BY 1, C
C
C
D
E

Figure 499, Union and Union All SQL

NOTE: Recursive SQL requires that there be a UNION ALL phrase between the two main
parts of the statement. The UNION ALL, unlike the UNION, allows for duplicate output
rows which is what often comes out of recursive processing.

Intersect & Intersect All

An INTERSECT operation retrieves the matching set of distinct values (not rows) from two
columns. The INTERSECT ALL returns the set of matching individual rows.

SELECT R1 Rl R2 | NTERSECT | NTERSECT ALL
FROM R1 - - - - —=—======= =============
I NTERSECT A A A A
SELECT R2 A A B A
FROM R2 A B C B
ORDER BY 1; B B B
B B C
SELECT R1 C C
FROM R1 cC D
| NTERSECT ALL C
SELECT R2 E
FROM R2
ORDER BY 1;

Figure 500, Intersect and Intersect All SQL

An INTERSECT and/or EXCEPT operation is done by matching ALL of the columnsin the
top and bottom result-sets. In other words, these are row, not column, operations. It is not
possible to only match on the keys, yet at the same time, also fetch non-key columns. To do
this, one needs to use a sub-query.

Except & Except All

An EXCEPT operation retrieves the set of distinct data values (not rows) that exist in the first
the table but not in the second. The EXCEPT ALL returns the set of individual rows that exist
only in thefirst table.

174 Usage Notes

DB2 UDB V8.1 Cookbook ©

SELECT R1 R1 R1
FROM R1 EXCEPT EXCEPT ALL
EXCEPT Rl R2 R2 R2
SELECT R2 - - - - ===== —=========
FROM R2 A A E A
ORDER BY 1; A A C
A B C
SELECT R1 B B E
FROM R1 B B
EXCEPT ALL C C
SELECT R2 C D
FROM R2 C
ORDER BY 1; E

Figure 501, Except and Except All SQL (R1 on top)

Because the EXCEPT operation is not commutative, using it in the reverse direction (i.e. R2
to Rl instead of R1to R2) will give adifferent result:

SELECT R2 R2 R2
FROM R2 EXCEPT EXCEPT ALL
EXCEPT Rl R2 R1 R1
SELECT Rl -- - =—==== —====—===C
FROM R1 A A D B
CRDER BY 1, A A D
A B
SELECT R2 B B
FROM R2 B B
EXCEPT ALL c C
SELECT R1 C D
FROM R1 C
CRDER BY 1, E

Figure 502, Except and Except All SQL (R2 on top)

NOTE: Only the EXCEPT operation is not commutative. Both the UNION and the INTER-
SECT operations work the same regardless of which table is on top or on bottom.

Precedence Rules

When multiple operations are done in the same SQL statement, there are precedencerules:
¢ Operationsin parenthesis are done first.

e INTERSECT operations are done before either UNION or EXCEPT.

¢ Operations of equal worth are done from top to bottom.

The next exampleillustrates how parenthesis can be used change the processing order:

SELECT R1 (SELECT R1 SELECT R1 Rl R2
FROM R1 FROM R1 FROM R1 -- --
UNI ON UNI ON UNI ON A A
SELECT R2 SELECT R2 (SELECT R2 A A
FROM R2 FROM R2 FROM R2 A B
EXCEPT) EXCEPT EXCEPT B B
SELECT R2 SELECT R2 SELECT R2 B B
FROM R2 FROM R2 FROM R2 c C
ORDER BY 1, ORDER BY 1,) ORDER BY 1; C D
C
E
ANSVER ANSVER ANSVEER
E E A
B
C
E

Figure 503, Use of parenthesisin Union

Union, Intersect, and Except 175

Graeme Birchall ©

Unions and Views

Imagine that one has a series of tablesthat track sales data, with one table for each year. One
can define aview that isthe UNION ALL of these tables, so that a user would seethem asa
single object. Such aview can support inserts, updates, and deletes, aslong as each table in
the view has a constraint that distinguishesit from all the others. Below is an example:

CREATE TABLE SALES DATA 2002

(SALES_DATE DATE NOT NULL
, DAILY_SEH I NTEGER NOT NULL
,CUST_ID I NTEGER NOT NULL
, AMOUNT DEC(10, 2) NOT NULL
, | NVOI CE# I NTEGER NOT NULL
, SALES_REP CHAR(10) NOT NULL

, CONSTRAI NT C CHECK (YEAR(SALES DATE) = 2002)
, PRI MARY KEY (SALES DATE, DAILY SEQH));

CREATE TABLE SALES DATA 2003

(SALES_DATE DATE NOT NULL
, DAI'LY_SEH I NTEGER NOT NULL
,CUST_ID I NTEGER NOT NULL
, AMOUNT DEC(10, 2) NOT NULL
, | NVOI CE# I NTEGER NOT NULL
, SALES_REP CHAR(10) NOT NULL

, CONSTRAI NT C CHECK (YEAR(SALES DATE) = 2003)
, PRI MARY KEY (SALES DATE, DAILY SEQH)):

CREATE VI EW SALES_DATA AS
SELECT *

FROM SALES DATA 2002

UNI ON ALL

SELECT *

FROM SALES DATA 2003;

Figure 504, Define view to combine yearly tables

Below is some SQL that changes the contents of the above view:

I NSERT | NTO SALES_DATA VALUES (' 2002-11-22',1, 123, 100. 10, 996, SUE’)
, (12002-11-22', 2,123, 100. 10, 997, JOHN')
,(72003-01-01",1, 123, 100. 10, 998, FRED)
, (' 2003-01-01", 2,123, 100. 10, 999, ' FRED) ;

UPDATE SALES DATA
SET AMOUNT = AMOUNT / 2
VWHERE SALES REP = ' JOHN ;

DELETE

FROM SALES_DATA

WHERE SALES DATE = ’ 2003-01- 01’
AND DAILY SEQ¢ = 2;

Figure 505, Insert, update, and delete using view

Below is the view contents, after the aboveis run:
SALES DATE DAILY SEQ¥# CUST ID AMOUNT | NVO CE# SALES REP

01/01/ 2003 1 123 100. 10 998 FRED
11/ 22/ 2002 1 123 100. 10 996 SUE
11/ 22/ 2002 2 123 50. 05 997 JOHN

Figure 506, View contents after insert, update, delete

176 Usage Notes

DB2 UDB V8.1 Cookbook ©

Summary Tables

Astheir name implies, summary tables maintain a summary of the datain another table. The
DB2 optimizer knows about summary tables, and it can use them instead of real tables when
working out an access path. To illustrate, imagine the following summary table:

CREATE TABLE FRED. STAFF_SUMVARY AS
(SELECT DEPT

, COUNT(*) AS COUNT_ROWS
, SUM | D) AS SUM | D
FROM FRED. STAFF

GROUP BY DEPT
) DATA | NI TI ALLY DEFERRED REFRESH | MVEDI ATE

Figure 507, Sample Summary Table DDL

Below on the left isaquery that is very similar to the one used in the above CREATE state-
ment. The DB2 optimizer will convert this query into the optimized equivalent shown on the
right, which uses the summary table. Because the data in the summary table is maintained in
sync with the source table, both statements will return the same answer.

ORI G NAL QUERY OPTI M ZED QUERY

SELECT DEPT SELECT QL. DEPT AS "DEPT"
, AVG(1 D) ,QL.SUM I D / QL. COUNT_RO\S

FROM FRED. STAFF FROM FRED. STAFF_SUMVARY AS QL

GROUP BY DEPT
Figure 508, Original and Optimized queries

When used appropriately, summary tables can give dramatic improvementsin query perform-
ance. However, thereisa cost involved. If the source data changes alot, or is not summarized
(inaquery) very often, or does not reduce much when summarized, then summary tables may
cost more than what they save.

Summary Table Types
The summary table typeis defined using clauses in the CREATE TABLE statement:

e TheDEFINITION ONLY clause creates a summary table using a SELECT statement to
define the fields. In other words, atable is created that will accept the results of the SE-
LECT, but no SELECT isrun.

e TheDATA INITIALLY DEFERRED REFRESH DEFERRED clause creates a table that
isaso based on a SELECT statement. But the difference here isthat DB2 stores the SE-
LECT statement away. At some later date, you can say REFRESH TABLE and DB2 will
first DELETE all of the existing rows, then run the SELECT statement to (you guessed it)
repopulate the table.

e TheDATA INITIALLY DEFERRED REFRESH IMMEDIATE clause creates atable
that is also based on a SELECT statement. Once created, this type of table hasto be re-
freshed once, and from then on DB2 will maintain the summary table in sync with the
source table as changes are made to the | atter.

In addition to the above, we shall also describe how one can create and populate your own
summary tables using DB2 triggers.

Summary Tables 177

Graeme Birchall ©

IBM Implementation

A Summary Table is defined using a variation of the standard CREATE TABLE statement.
Instead of providing an element list, one supplies a SELECT statement:

w CREATE

F (select stmt) DEFINITION ONLY }
—[DATA INITIALLY DEFERRED REFRESH DEFERRED jj
—E IMMEDIATE

TABLE —— table-name AS
L SUMMARY J }

r ENABLE QUREY OPTIMIZATION “ r MAINTAINED BY SYSTEM —

L Il

DISABLE QUREY OPTIMIZATION L MAINTAINED BY USER
Figure 509, Summary Table DDL, Syntax Diagram

P4

DDL Restrictions

Certain restrictions apply to the SELECT statement that is used to define the summary table.
These restrictions get tighter as the summary table becomes more capable:

Definition Only Summary Tables

e Anyvalid SELECT statement is allowed.

¢ Every column selected must have a name.

e AnORDER BY isnot alowed.

¢ Referenceto atyped table or typed view is not allowed.
Refresh Deferred Summary Tables

All of the above restrictions apply, plus the following:

» Referenceto declared temporary table is not allowed.

¢ Referenceto anickname or summary table is not allowed.

* Referenceto a system catalogue table is not allowed. Reference to an explain tableisal-
lowed, but isimpudent.

¢ Referenceto NODENUMBER, PARTITION, or any other function that depends on
physical characteristics, is not alowed.

¢ Referenceto adatalink typeis not alowed.
* Functions that have an external action are not allowed.

e Scaar functions, or functions written in SQL, are not allowed. So SUM(SALARY) is
fine, but SUM(INT(SALARY)) isnot alowed.

Refresh Immediate Summary Tables

All of the above restrictions apply, plus the following:

« If the query references more than one table or view, it must define as inner join, yet not
use the INNER JOIN syntax (i.e. must use old style).

178 IBM Implementation

DB2 UDB V8.1 Cookbook ©

e The SELECT statement must contain a GROUP BY,, unless REPLICATED is specified,
in which case a GROUP BY is not allowed.

e The SELECT must have a COUNT(*) or COUNT_BIG(*) column.

¢ Besidesthe COUNT and COUNT _BIG, the only other column functions supported are
SUM and GROUPING - all with the DISTINCT phrase. Any field that alows nulls, and
that is summed, but aso have a COUNT (column name) function defined.

¢ Anyfieldinthe GROUPBY list must bein the SELECT list.

¢ Thetable must have at least one unique index defined, and the SELECT list must include
(amongst other things) al the columns of thisindex.

¢ Grouping sets, CUBE an ROLLUP are allowed. The GROUP BY items and associated
GROUPING column functionsin the select list must for a unique key of the result set.

 TheHAVING clauseis not alowed.

e TheDISTINCT clauseis not allowed.

* Non-deterministic functions are not allowed.

e Special registers are not allowed.

e |If REPLICATED is specified, the table must have a unique key.
Enable Query Optimization

The table is used for query optimization when appropriate. Thisis the default. The table can
also be queried directly.

Disable Query Optimization

The table will not be used for query optimization, but can still be queried directly.
Maintained by System

The datain the summary table is maintained by the system. Thisis the defauilt.
Maintained by User

The user is allowed to perform insert, update, and del ete operations against the summary ta-
ble. The table cannot be refreshed. This type of table can be used when you want to maintain
your own summary table (e.g. using triggers) to support features not provided by DB2. The
table can a so be defined to enable query optimization, but the optimizer will probably never
useit as a substitute for ared table.

Options vs. Actions

The following table compares summary table definition options to subsequent actions:

SUMVARY TABLE DEFI NI TI ON ALLOWABLE ACTI ONS ON SUMVARY TABLE
REFRESH MAI NTAI NED BY REFRESH TABLE | NSERT/ UPDATE/ DELETE
DEFERRED SYSTEM yes no

USER no yes
| MVEDI ATE SYSTEM yes no

Figure 510, Summary table options vs. allowable actions

Below is atypical summary table definition:

Summary Tables 179

Graeme Birchall ©

CREATE TABLE EMP_SUMVARY AS

(SELECT \WORKDEPT AS DEPT
, SEX AS SEX
, COUNT_BI G(*) AS NUM RO
, COUNT(SALARY) AS NUM SALARY
, SUM SALARY) AS SUM SALARY
, GROUPI NG(WORKDEPT) AS FD
, GROUPI NG(SEX) AS FS

FROM EMPLOYEE

WHERE ~ JOB = ' MANAGER

AND LASTNAME LI KE ' %8%

GROUP BY CUBE(WORKDEPT, SEX)

) DATA | NI TI ALLY DEFERRED REFRESH | MVEDI ATE
ENABLE QUERY OPTI M ZATI ON

MAI NTAI NED BY SYSTEM

Figure 511, Typical summary table definition

Definition Only Summary Tables

Definition-only summary tables are not true summary tables. They can not be refreshed, and
once created, DB2 treats them as ordinary tables. Their usefulness comes from how one can
use the CREATE SUMMARY TABLE syntax to quickly build atable that will accept the
output of aquery. Almost any kind of query is allowed.

Below is an example of adefinition-only summary table. A simple"SELECT *" isused to
define a new table that has the same columns as the source. When used this way, the sum-
mary table has the same capability asthe "CREATE TABLE LIKE another" syntax that is
availablein DB2 for OS/390:

CREATE SUMMVARY TABLE STAFF_COPY AS
(SELECT *

FROM STAFF)

DEFI NI TI ON ONLY;

Figure 512, Definition-Only Summary Table DDL - simple SQL
Hereis another way to write the above:

CREATE TABLE STAFF_COPY LI KE STAFF;
Figure 513, Create copy of table using LIKE syntax

The next example creates a table based on the output of a GROUP BY statement:

CREATE SUMVARY TABLE STAFF_SUBSET AS
(SELECT S1.1D
, S1. DEPT
,S1.COW / 12 AS NMONTY_COWM
, (SELECT MAX(S2. SALARY)
FROM STAFF S2
WHERE S2. DEPT = S1. DEPT)
AS MAX_SALARY
FROM STAFF S1
WHERE S1.ID > 10
AND S1.COWM >
(SELECT M N(COMM)
FROM STAFF))
DEFI NI TI ON ONLY

Figure 514, Definition-Only Summary Table DDL - complex SQL
Refresh Deferred Summary Tables

A summary table defined REFRESH DEFERRED can be periodically updated using the RE-
FRESH TABLE command. Below is an example of a summary table that has one row per
department in the STAFF table:

180 IBM Implementation

DB2 UDB V8.1 Cookbook ©

CREATE TABLE STAFF_NAMES AS
(SELECT NAME

, COUNT(*) AS COUNT _ROWS
, SUM SALARY) AS SUM SALARY
, AVG(SALARY) AS AVG_SALARY
. MAX(SALARY) AS MAX_SALARY
. M N(SALARY) AS M N_SALARY

, STDDEV(SALARY) AS STD_SALARY
, VARI ANCE(SALARY) AS VAR SALARY
, CURRENT Tl MESTAMP AS LAST_CHANGE

FROM STAFF
VWHERE TRANSLATE(NAME) LI KE ™ %A%
AND SALARY > 10000

CROUP BY NAME

HAVING COUNT(*) = 1)

DATA | NI TI ALLY DEFERRED REFRESH DEFERRED
Figure 515, Refresh Deferred Summary Table DDL

Refresh Immediate Summary Tables

A summary table defined REFRESH IMMEDIATE is automatically maintained in sync with
the source table by DB2. Aswith any summary table, it is defined by referring to a query.
Below isasummary table that refers to a single source table:

CREATE TABLE EMP_SUMVARY AS

(SELECT EMP. WORKDEPT
, COUNT(*) AS NUM ROWS
, COUNT(EMP. SALARY) AS NUM_SALARY
, SUM EMP. SALARY) AS SUM SALARY
, COUNT(EMP. COMM) AS NUM_COWM
, SUM EMP. AS SUM_ COWM
FROM EMPLOYEE EMP

GROUP BY EMP. WORKDEPT
) DATA | NI TI ALLY DEFERRED REFRESH | MVEDI ATE;

Figure 516, Refresh Immediate Summary Table DDL

Below is aquery that can use the above summary table in place of the base table:

SELECT EMP. WORKDEPT
, DEC(SUM EMP. SALARY) , 8,2) AS SUM SAL
. DEC(AVG{ EMP. SALARY) , 7, 2) AS AVG SAL
, SMALLI NT(COUNT(EMP. COWM)) AS #COWNS
, SMALLI NT(COUNT(*)) AS #EMPS

FROM EMPLOYEE EMP

WHERE EMP. WORKDEPT > ' C

GROUP BY EMP. WORKDEPT
HAVING COUNT(*) < 5

AND SUM EMP. SALARY) > 50000
ORDER BY SUM SAL DESC;

Figure 517, Query that uses summary table (1 of 3)

The next query can also use the summary table. Thistime, the data returned from the sum-
mary table is qualified by checking against a sub-query:

SELECT EMP. WORKDEPT
, COUNT(*) AS #RONS

FROM EMPLOYEE EMP

WHERE ~ EMP. WORKDEPT | N

(SELECT DEPTNO
FROM DEPARTMENT
VWHERE DEPTNAME LI KE
GROUP BY EMP. WORKDEPT
HAVI NG SUM SALARY) > 50000;

Figure 518, Query that uses summary table (2 of 3)

" 8%)

Summary Tables 181

Graeme Birchall ©

Thislast example uses the summary table in a nested table expression:

SELECT #EMPS
, DEC(SUM SUM SAL), 9,2) AS SAL_SAL

. SMALLI NT(COUNT(*)) AS #DEPTS
FROM (SELECT EMP. WORKDEPT
, DEC(SUM EMP. SALARY) , 8,2) AS SUM SAL
. MAX(EMP. SALARY) AS MAX_SAL
. SVALLI NT(COUNT(*)) AS #EMPS
FROM EMPLOYEE EMP
GROUP BY EMP. WORKDEPT
) AS XXX

GROUP BY #EMPS
HAVING COUNT(*) > 1
ORDER BY #EMPS

FETCH FI RST 3 ROAS ONLY
OPTIM ZE FOR 3 ROWS;

Figure 519, Query that uses summary table (3 of 3)
Queries that don’t use Summary Table

Below isaquery that can not use the EMP_SUMMARY table because of the reference to the
MAX function. Ironically, this query is exactly the same as the nested table expression above,
but in the prior example the MAX isignored becauseit is never actually selected:
SELECT ENP. WORKDEPT
, DEC(SUM EMP. SALARY), 8,2) AS SUM SAL
, MAX(EMP. SALARY) AS MAX_SAL

FROM EMPLOYEE EMP
GROUP BY EMP. WORKDEPT;

Figure 520, Query that doesn’t use summary table (1 of 2)

The following query can't use the summary table because of the DISTINCT clause:

SELECT EMP. WORKDEPT
, DEC(SUM EMP. SALARY) , 8,2) AS SUM SAL
, COUNT(DI STI NCT SALARY) AS #SALARI ES
FROM EMPLOYEE EMP
GROUP BY EMP. WORKDEPT;

Figure 521, Query that doesn’t use summary table (2 of 2)

Usage Notes and Restrictions

¢« A summary table must be refreshed before it can be queried. If the tableis defined refresh
immediate, then the table will be maintained automatically after the initial refresh.

¢ Make sureto commit after doing arefresh. The refresh does not have an implied commit.
¢ Run RUNSTATS after refreshing a summary table.

¢ One can not load data into summary tables.

¢ One can not directly update summary tables.

To refresh asummary table, use either of the following commands:

REFRESH TABLE EMP_SUMVARY;
COW T,

SET | NTEGRI TY FOR EMP_SUMVARY | MVEDI ATE CHECKED;
COW T;
Figure 522, Summary table refresh commands

182 IBM Implementation

DB2 UDB V8.1 Cookbook ©

Multi-table Summary Tables

Single-table summary tables save having to look at individual rows to resolve a GROUP BY .

Multi-table summary tables do this, and also avoid having to resolve ajoin.

CREATE TABLE DEPT_EMP_SUMVARY AS
(SELECT EMP. WORKDEPT
DPT. DEPTNANE
" COUNT(*) AS NUM ROWS
, COUNT(EMP. SALARY) AS NUM_SALARY
, SUM EMP. SALARY) AS SUM SALARY
, COUNT(EMP. COMM) AS NUM_COWM
, SUM EMP. COVM) AS SUM_ COWM
FROM EMPLOYEE EMP
, DEPARTMENT DPT
WHERE ~ DPT. DEPTNO = EMP. WORKDEPT
GROUP BY EMP. WORKDEPT
, DPT. DEPTNAME
) DATA | NI TI ALLY DEFERRED REFRESH | MVEDI ATE;

Figure 523, Multi-table Summary Table DDL

The following query is resolved using the above summary table:
SELECT D. DEPTNAVE

, D. DEPTNO
, DEC(AVG(E. SALARY), 7,2) AS AVG SAL
, SMALLI NT(COUNT(*)) AS #ENVPS
FROM DEPARTNMENT D
,EMPLOYEE E
WHERE E WORKDEPT = D. DEPTNO

AND D. DEPTNAME LI KE '~ %8%
GROUP BY D. DEPTNAME
, D. DEPTNO
HAVING SUM E. cOW) > 4000
ORDER BY AVG _SAL DESC,

Figure 524, Query that uses summary table

Hereisthe SQL that DB2 generated internally to get the answer:

SELECT . $C0 AS " DEPTNAME"
, @. $CL AS "DEPTNO'
, 2. $C2 AS "AVG SAL"
, Q2. $C3 AS " #EMPS"
FROM (SELECT QL. DEPTNAME
, QL. WORKDEPT
, DEC((QL. SUM SALARY / QL. NUM SALARY), 7, 2)
, SMALLI NT(QL. NUM_ROWS)
FROM DEPT_EMP_SUMMARY AS Q1L
WHERE (QL. DEPTNAME LI KE * %8%)
AND (4000 < QL. SUM COW)
)AS Q@
ORDER BY . $C2 DESC;
Figure 525, DB2 generated query to use summary table

Rules and Restrictions

AS $Q0
AS $C1
AS $C2
AS $C3

e Thejoin must be aninner join, and it must be written in the old style syntax.

¢ Every table accessed in the join (except one?) must have a unigue index.

e Thejoin must not be a Cartesian product.

¢ TheGROUPBY must include al of the fields that define the unique key for every table

(except one?) in thejoin.

Summary Tables

Three-table Summary Table example

CREATE TABLE DPT_EMP_ACT_SUMRY AS

EMP. WORKDEPT

, DPT. DEPTNAME

, EMP. EMPNO

, EMP. FI RSTNVE

, SUM ACT. EMPTI ME)

(SELECT

Graeme Birchall ©

AS SUM TI ME

, COUNT(ACT. EMPTI ME) AS NUM_TI ME

, COUNT(*)

DEPARTMENT DPT
,EMPLOYEE EMP
,EMP_ACT ACT

FROM

VHERE
AND EMP. EMPNO = ACT. EMPNO
GROUP BY EMP. WORKDEPT
, DPT. DEPTNAME
, EMP. EMPNO
, EMP. FI RSTNVE

AS NUM_ROWG

DPT. DEPTNO = ENMP. WORKDEPT

) DATA | NI TI ALLY DEFERRED REFRESH | MVEDI ATE;

Figure 526, Three-table Summary Table DDL

Now for aquery that will use the above:

SELECT D. DEPTNO
, D. DEPTNAMVE
, DEC(AVG(A. ENPTI ME) , 5, 2) AS AVG TI ME
FROM DEPARTMENT D
,EMPLOYEE E
JEMP_ACT A
WHERE D. DEPTNO = E. WORKDEPT
AND E. EMPNO = A EMPNO
AND D. DEPTNAME LI KE ’ %8%
AND E. FIRSTNVE LI KE * %8%

GROUP BY D. DEPTNO
, D. DEPTNAME
ORDER BY 3 DESC,

Figure 527, Query that uses summary table

And hereisthe DB2 generated SQL:

SELECT 4. $C0 AS "DEPTNO'
, Q4. 3C1 AS " DEPTNAME"
, Q4. 8C2 AS "AVG TI ME"

FROM (SELECT 8. $C3 AS $C0
, (8. $C2 AS $C1
,DEC((@B.$CL / @B.$00),5,2) AS $C2
FROM (SELECT SUM @. $C2) AS $C0
, SUM Q2. $C3) AS $C1
, Q@. $C0 AS $C2
, Q2. $CL AS $C3
FROM (SELECT QL. DEPTNAME AS $C0
, QL. WORKDEPT AS $C1
, QL. NUM_TI ME AS $C2
, QL. SUM_TI NE AS $C3
FROM DPT_EMP_ACT_SUMRY AS QL
WHERE (QL. FI RSTNVE LI KE * 9%6%)
AND (QL. DEPTNAME LI KE * %5%)
)AS Q2
GROUP BY Q. $CL
, 2. $C0
)AS (B
)AS 4

ORDER BY 4. $C2 DESC;

Figure 528, DB2 generated query to use summary table

184

IBM Implementation

DB2 UDB V8.1 Cookbook ©

Indexes on Summary Tables

To really make things fly, one can add indexes to the summary table columns. DB2 will then
use these indexes to locate the required data. Certain restrictions apply:

¢ Uniqueindexes are not allowed.

e Thesummary table must not be in a"check pending" status when the index is defined.
Run arefresh to address this problem.

Below are someindexes for the DPT_EMP_ACT_SUMRY table that was defined above:

CREATE | NDEX DPT_EMP_ACT_SUMKX1
ON DPT_EMP_ACT_SUMRY
(WORKDEPT
, DEPTNAME
, EMPNO
, FI RSTNVE) ;

CREATE | NDEX DPT_EMP_ACT_SUMX2
ON DPT_EMP_ACT_SUMRY
(NUM_ROVB) ;
Figure 529, Indexes for DPT_EMP_ACT_SUMRY summary table

The next query will use the first index (i.e. on WORKDEPT):

SELECT D. DEPTNO
, D. DEPTNANE
, E. EMPNO
, E. FI RSTNMVE
, | NT(AVG A. EMPTI ME)) AS AVG TI ME
FROM DEPARTMENT D
,EMPLOYEE E
, EMP_ACT A
DEPTNO
EMPNO .
DEPTNO LI KE * D%
. DEPTNO
DEPTNANME
EMPNO
. FI RSTNMVE
ORDER BY 1, 2,3, 4;
Figure 530, Sample query that use WORKDEPT index

The next query will use the second index (i.e. on NUM_ROWS):

SELECT D. DEPTNO
, D. DEPTNANE
, E. EMPNO
, E. FI RSTNMVE
, COUNT(*) AS #ACTS
FROM DEPARTNMENT
, EMPLOYEE
, EMP_ACT
WHERE D. DEPTNO
AND E. ENPNO
GROUP BY D. DEPTNO
, D. DEPTNANE
, E. EMPNO
, E. FI RSTNMVE
HAVING COUNT(*) > 4
ORDER BY 1, 2,3, 4;
Figure 531, Sample query that uses NUM_ROWS index

Don't forget to run RUNSTATS.

WHERE
AND
AND

GROUP BY

mmooomo

)
’
’

E. WORKDEPT
A. EMPNO

ni>mo

Summary Tables 185

Graeme Birchall ©

Roll Your Own

The REFRESH IMMEDIATE summary table provided by IBM supports the AVG, SUM, and
COUNT column functions. In this section we will use triggers to define our own summary
tables that will support all of the column functions. However, some of these triggers will be
painfully inefficient, so one would not actually want to use them in practice.

NOTE: Unlike with the IBM defined summary tables, the follow summary tables are not
known to the optimizer. To use them, you have to explicitly query them.
Inefficient Triggers

Below are two tables. The one on the left isidentical to the sample STAFF table that IBM
supplies. The one on theright, called STAFF_DEPT, will contain a summary of the datain
the STAFF table (by department).

SOURCE TABLE SUMVARY TABLE

CREATE TABLE FRED. STAFF CREATE TABLE FRED. STAFF_DEPT
(1D SMALLI NT NOT NULL (DEPT SMALLI NT

, NAMVE VARCHAR(9) , COUNT_ROAS SMALLI NT

, DEPT SMALLI NT , SUM SALARY DECI MAL(9, 2)
,JoB CHAR(5) , AVG SALARY DECI MAL(7, 2)

, YEARS SMALLINT , MAX_SALARY DECI MAL(7, 2)

, SALARY DECI MAL(7, 2) .M N_SALARY DECI MAL(7, 2)

, COWM DECI MAL(7, 2) , STD_SALARY DECI MAL(7, 2)

, PRIMARY KEY (1D)) , VAR_SALARY DOUBLE

, LAST_CHANGE Tl MESTAMP)
Figure 532, Source and Summary table DDL

Triggers will be used to automatically update the STAFF_DEPT table as the STAFF data
changes. However, these triggers are not going to be very efficient. Every time achangeis
made to the STAFF table, the invoked trigger will delete the existing row (if any) from the
STAFF_DEPT table, and then insert anew one (if possible). Three triggers are required, one
each for an insert, update, and delete.

CREATE TRI GGER FRED. STAFF_I NS

AFTER | NSERT ON FRED. STAFF

REFERENCI NG NEW AS NNN

FOR EACH ROW MODE DB2SQL
BEG N ATOM C

DELETE

FROM FRED. STAFF_DEPT

VWHERE DEPT = NNN. DEPT
OR (DEPT 'S NULL

AND NNN. DEPT |'S NULL);

| NSERT

| NTO FRED. STAFF_DEPT

SELECT DEPT
, COUNT(*) AS COUNT_ROWS
, SUM SALARY) AS SUM SALARY
, AVG(SALARY) AS AVG SALARY

Figure 533, INSERT Trigger, part 1 of 2

186 Roll Your Own

DB2 UDB V8.1 Cookbook ©

, MAX(SALARY)

. M N(SALARY)

, STDDEV(SALARY)

. VARl ANCE(SALARY)

, CURRENT TI MESTAMP AS LAST CHANGE

FROM FRED. STAFF
VHERE DEPT = NNN. DEPT
OrR (DEPT I'S NULL

AND NNN. DEPT 1S NULL)
GRCOUP BY DEPT,;
END

AS MAX_SALARY
AS M N_SALARY
AS STD_SALARY
AS VAR _SALARY

Figure 534, INSERT Trigger, part 2 of 2

CREATE TRI GGER FRED. STAFF_UPD

AFTER

UPDATE OF SALARY, DEPT, COVM ON FRED. STAFF

REFERENCI NG OLD AS OO0
NEW AS NNN

FOR EACH ROW

MODE DB2SQL

BEG N ATOM C

DELETE

FROM FRED. STAFF_DEPT

VWHERE DEPT = NNN. DEPT
R DEPT = 000 DEPT
OrR (DEPT I'S NULL

AND (NNN. DEPT IS NULL

OR 000 DEPT IS NULL));

| NSERT
| NTO FRED. STAFF_DEPT
SELECT DEPT
, COUNT(*) AS COUNT _ROWS
, SUM SALARY) AS SUM SALARY
, AVG(SALARY) AS AVG_SALARY
. MAX(SALARY) AS MAX_SALARY
. M N(SALARY) AS M N_SALARY
, STDDEV(SALARY) AS STD_SALARY
. VARl ANCE(SALARY) AS VAR SALARY
, CURRENT TI MESTAMP AS LAST CHANGE
FROM FRED. STAFF
WHERE ~ DEPT = NNN. DEPT
OR DEPT = Q0O DEPT
OR (DEPT 'S NULL

AND (NNN. DEPT IS NULL

OR 000 DEPT IS NULL))

GROUP BY DEPT;
END

Figure 535, UPDATE Trigger

CREATE TRI GGER FRED. STAFF_DEL
AFTER

DELETE ON FRED. STAFF
REFERENCI NG OLD AS OCO

FOR EACH ROW

MODE DB2SQL

BEG N ATOM C

Figure 536, DELETE Trigger, part 1 of 2

Summary Tables

187

Graeme Birchall ©

DELETE

FROM FRED. STAFF_DEPT

VHERE DEPT = 000 DEPT
OrR (DEPT I'S NULL

AND OO0, DEPT 'S NULL);

| NSERT

| NTO FRED. STAFF_DEPT

SELECT DEPT
, COUNT(*) AS COUNT_ROWS
. SUM_ SALARY) AS SUM SALARY
, AVG(SALARY) AS AVG_SALARY
. MAX(SALARY) AS MAX_SALARY
. M N(SALARY) AS M N_SALARY
. STDDEV(SALARY) AS STD_SALARY
. VARl ANCE(SALARY) AS VAR SALARY
. CURRENT TI MESTAMP AS LAST CHANGE

FROM FRED. STAFF

WHERE DEPT = 000 DEPT

OR (DEPT 'S NULL

AND OO0, DEPT |'S NULL)
GRCUP BY DEPT,;

END

Figure 537, DELETE Trigger, part 2 of 2
Efficiency (not)

The above triggers can be extremely expensive to run, especially when there are many rows
in the STAFF table for a particular department. Thisis because every time arow is changed,
all of the rowsin the STAFF table in the same department are scanned in order to make the
new row in STAFF_DEPT.

Also, the above triggers are invoked once per row changed, so a mass update to the STAFF
table (e.g. add 10% to all salariesin a given department) will result in the invoked trigger
scanning all of the rows in the impacted department(s) multiple times.

Notes

The above CREATE TRIGGER statements are shown without a statement terminator.
The"!" (exclamation mark) was used, but because this is non-standard, it was removed
from the sample code. The semi-colon can not be used, because these triggers contain
ATOMIC SQL statements.

One advantage of the above trigger design is that one can include just about anything that
comes to mind in the summary table. More efficient triggers (see below), and the IBM
summary tables are more restrictive.

The above STAFF_DEPT table lacks a primary key because the DEPT value can be null.
It might be prudent to create a unique index on this column.

Unlike with the IBM summary tables, there is no way to prevent users from directly
updating the STAFF_DEPT table, except by using the standard DB2 security setup.

Initial Data Population

If the STAFF table already has data when the triggers are defined, then the following IN-
SERT hasto be run to populate the STAFF_DATA table:

188

Roll Your Own

DB2 UDB V8.1 Cookbook ©

| NSERT

| NTO FRED. STAFF_DEPT

SELECT DEPT
, COUNT(*) AS COUNT_ROWS
, SUM_ SALARY) AS SUM SALARY
, AVG({ SALARY) AS AVG_SALARY
, MAX(SALARY) AS MAX_SALARY
. M N(SALARY) AS M N_SALARY

, STDDEV(SALARY) AS STD SALARY
, VARI ANCE(SALARY) AS VAR SALARY
, CURRENT TI MESTAMP AS LAST_CHANGE
FROM FRED. STAFF
GROUP BY DEPT;

Figure 538, Initial population of STAFF_DATA table

Efficient Triggers

In this section we will use triggers that, unlike those shown above, do not scan al of the rows
in the department, every time a STAFF table row is changed. In order to make the code used
easier to understand, both the DEPT and SALARY fields will be defined as not null.

SOURCE TABLE SUMVARY TABLE

CREATE TABLE FRED. STAFF CREATE TABLE FRED. STAFF_DEPT

(1D SVALLI NT NOT NULL (DEPT SMVALLI NT NOT NULL
, NAMVE VARCHAR(9) , COUNT_ROWS SVALLI NT NOT NULL
, DEPT SMVALLI NT NOT NULL , SUM_SALARY DECI MAL(9, 2) NOT NULL
,JOB CHAR(5) , AVG_SALARY DECI MAL(7,2) NOT NULL
, YEARS SMALLI NT , MAX_SALARY DECI MAL(7, 2) NOT NULL
, SALARY DECI MAL(7,2) NOT NULL , M'N_SALARY DECI MAL(7,2) NOT NULL
, COW DECI MAL(7, 2) , #RON6_CHANGED | NTEGER NOT NULL
, PRIMARY KEY (I D)) , #CHANG NG_SQL | NTEGER NOT NULL

,LAST CHANGE TIMESTAMP NOT NULL
, CREATE_DEPT TIMESTAMP NOT NULL
, PRIMARY KEY (DEPT))

Figure 539, Source and Summary table DDL

NOTE: Having an index on DEPT (above) will enable some of the triggered SQL state-
ments to work much faster.

The above STAFF_DEPT table differs from the previous in the following ways:

e Thereare no Standard Deviation and Variance fields. These would require scanning all of
the rows in the department in order to recalculate, so have been removed.

¢ Thereisa#ROWS CHANGED field that keeps a count of the number of times that rows
in agiven department have been insert, updated, or deleted.

e Thereisa#CHANGING_SQL field that keeps a count of the number of SQL statements
that have impacted rows in agiven department. A SQL statement that updates multiple
rows only gets counted once.

e ThereisaCREATE_DEPT field that records when the department was first created.

The above three new fields can exist in this summary table, but not the previous, because the
triggers defined below do not remove arow (for a department) until there are no more related
rows in the STAFF table. Therefore, historical information can be maintained over time.

Insert Trigger

Thistrigger, which isinvoked for each row inserted, does two things:

Summary Tables 189

Graeme Birchall ©

* If norow exists (for the department) in STAFF_DEPT, insert a placeholder row. Some
field values will be over-ridden in the following update, but others are important because
they begin a sequence.

e Update the STAFF_DEPT row for the department, even if the row was just inserted. All
fields are updated except CREATE_DEPT. Also, if the update stmt has the same CUR-
RENT TIMESTAMP asthe prior insert, the #CHANGING_SQL field is not changed.

CREATE TRI GGER FRED. STAFF_I NS
AFTER | NSERT ON FRED. STAFF
REFERENCI NG NEW AS NNN

FOR EACH ROW

MODE DB2SQL

BEG N ATOM C

INTO FRED. STAFF_DEPT
SELECT NNN. DEPT
, CAST(0 AS SMALLINT) AS COUNT ROAS
. CAST(0 AS SMALLINT) AS SUM SALARY
, CAST(0 AS SMALLINT) AS AVG SALARY
. NNN. SALARY AS MAX_SALARY
. NNN. SALARY AS M N_SALARY
, CAST(0 AS I NTEGER) AS #ROWS CHANGED
CAST(1 AS I NTEGER) AS #CHANG NG SQL
. CURRENT TI MESTAMP AS LAST CHANGE
, CURRENT TI MESTAMP AS CREATE_DEPT
FROM FRED. STAFF
WHERE 1D = NNN. I D
AND NNN. DEPT NOT I N
(SELECT DEPT
FROM FRED. STAFF_DEPT);

--- UPDATE DEPT ROW | NCREMENT ---

UPDATE FRED. STAFF_DEPT

SET COUNT_ROAS = COUNT_ROWS + 1
,SUM SALARY = SUM SALARY + NNN. SALARY
,AVG SALARY =(SUM SALARY + NNN. SALARY)
/ (COUNT_ROWS + 1)
, MAX_SALARY = CASE

VWHEN NNN. SALARY <= MAX_SALARY
THEN MAX_SALARY
ELSE NNN. SALARY
END
, M N_SALARY = CASE
WHEN NNN. SALARY >= M N_SALARY
THEN M N_SALARY
ELSE NNN. SALARY

END
, #RON6_CHANGED = #ROWS_CHANGED + 1
, #CHANG NG_SQL = CASE

WHEN LAST_CHANGE = CURRENT TI MESTAMP
THEN #CHANG NG_SQL
ELSE #CHANG NG SQL + 1

END
, LAST_CHANGE = CURRENT TI MESTAMP
VWHERE DEPT = NNN. DEPT;

END
Figure 540, INSERT Trigger

190 Roll Your Own

DB2 UDB V8.1 Cookbook ©

Doing Multiple Actions per Row

All of the triggersin this chapter are defined FOR EACH ROW, which means that they are
invoked once per row altered (as opposed to once per statement). All of the triggers can do
more than one action (e.g. an INSERT, and then an UPDATE).

When one wants multiple actions to be done after arow is changed, then one must put all of
the actionsinto asingle trigger. If the actions are defined in separate triggers, then first one
will be done, for all rows, then the action other, for all rows. If the initiating action was a
multi-row UPDATE (or INSERT, or DELETE) statement, then doing the two triggered ac-
tions, one after the other (on arow by row basis) is quite different from doing one (for all
rows) then the other (for all rows).

Update Trigger
Thistrigger, which isinvoked for each row updated, doesfive things:

¢ If norow exists (for the department) in STAFF_DEPT, insert a placeholder row. Some
field values will be over-ridden in the following update, but others are important because
they begin a sequence.

¢ If the department value is being changed, and there is only one row currently in the de-
partment, delete the row. This delete must be done before the update of the old row, be-
cause otherwise this update will get a divide-by-zero error, when trying to update the
AVG sdary.

e If the department value is not being changed, update the existing department row.
¢ If the department value is being changed, update the new department row.

e If the department value is being changed, update the old department row. |f the MAX or
MIN values were max or min (for the old department), but no longer are, then do a sub-
guery to find the new max or min. These sub-queries can return anull value if a multi-
row update has changed al department values, so the COALESCE function is used to
convert the null to zero. The user will never see the (invalid) zero, as the row will get de-
leted later in the trigger.

CREATE TRI GGER FRED. STAFF_UPD
AFTER UPDATE OF SALARY, DEPT, COWM ON FRED. STAFF
REFERENCI NG OLD AS OO0
NEW AS NNN
FOR EACH ROW
MODE DB2SQL
BEG N ATOM C

INTO FRED. STAFF_DEPT
SELECT NNN. DEPT
, CAST(0 AS SMALLINT) AS COUNT ROAS
, CAST(0 AS SMALLINT) AS SUM SALARY
, CAST(0 AS SMALLINT) AS AVG SALARY
, NNN. SALARY AS MAX_SALARY
. NNN. SALARY AS M N_SALARY
, CAST(0 AS I NTEGER) AS #ROWS_CHANGED
,CAST(1 AS INTEGER) AS #CHANG NG SQL
, CURRENT TI MESTAMP ~ AS LAST CHANGE
, CURRENT TI MESTAMP AS CREATE_DEPT

Figure 541, UPDATE Trigger, Part 1 of 3

Summary Tables 191

Graeme Birchall ©

FROM FRED. STAFF
WHERE ID = N\N.ID
AND NNN. DEPT NOT | N
(SELECT DEPT
FROM FRED. STAFF_DEPT) ;
--- DELETE I F LAST ROW I N DEPT ---
DELETE
FROM FRED. STAFF_DEPT
VWHERE NNN. DEPT <> O00. DEPT
AND DEPT = OOO. DEPT
AND COUNT_ROWS = 1,

UPDATE FRED. STAFF_DEPT

SET SUM_SALARY = SUM SALARY + NNN. SALARY - OOO SALARY
, AVG_SALARY =(SUM_SALARY + NNN. SALARY - OOO SALARY)

/ COUNT_ROWS
, MAX_SALARY = CASE
VHEN NNN. SALARY >=
THEN NNN. SALARY

MAX_SALARY

ELSE (SELECT MAX(SALARY)
FROM FRED. STAFF

WHERE DEPT =

END
, M N_SALARY = CASE
VWHEN NNN. SALARY <=
THEN NNN. SALARY

NNN. DEPT)

M N_SALARY

ELSE (SELECT M N(SALARY)
FROM FRED. STAFF

VWHERE DEPT =
END
, #RON6_CHANGED = #ROWS_CHANGED + 1
, #CHANG NG_SQL = CASE

VHEN LAST_CHANGE =
THEN #CHANG NG_SQL

NNN. DEPT)

CURRENT TI MESTAMP

ELSE #CHANG NG SQL + 1
END
,LAST CHANGE = CURRENT TI MESTAMP
WHERE ~ NNN. DEPT = 000. DEPT
AND NNN. DEPT = DEPT;
--- UPDATE NEW WHEN DEPT CHANGED ---
UPDATE FRED. STAFF_DEPT
SET ~ COUNT_ROWS = COUNT_ROWS + 1
, SUM SALARY = SUM SALARY + NNN. SALARY
,AVG SALARY =(SUM SALARY + NNN. SALARY)
/ (COUNT_ROWS + 1)
, MAX_SALARY = CASE
WHEN NNN. SALARY <= MAX_SALARY
THEN MAX_SALARY
ELSE NNN. SALARY
END
,MN_SALARY = CASE
WHEN NNN. SALARY >= M N_SALARY

THEN M N_SALARY
ELSE NNN. SALARY

END
, #RONS_CHANGED = #ROAS_CHANGED + 1
, #CHANGI NG _SQL = CASE

WHEN LAST CHANGE =
THEN #CHANG NG_SQL
ELSE #CHANG NG_SQL

Figure 542, UPDATE Trigger, Part 2 of 3

192

CURRENT TI MESTAMP
+1

Roll Your Own

DB2 UDB V8.1 Cookbook ©

END
, LAST_CHANGE = CURRENT Tl MESTAWMP
VWHERE NNN. DEPT <> O00. DEPT
AND NNN. DEPT = DEPT;

UPDATE FRED. STAFF_DEPT
SET COUNT_ROWS = COUNT_ROWS - 1
,SUM SALARY = SUM SALARY - 00O SALARY
,AVG SALARY = (SUM SALARY - 00O SALARY)
/ (COUNT_ROWS - 1)
, MAX_SALARY = CASE
WHEN OOO. SALARY < MAX_SALARY
THEN MAX_SALARY
ELSE (SELECT COALESCE(MAX(SALARY), 0)
FROM FRED. STAFF
WHERE DEPT = QOO. DEPT)
END
,MN_SALARY = CASE
WHEN O0O. SALARY > M N_SALARY
THEN M N_SALARY
ELSE (SELECT COALESCE(M N(SALARY), 0)
FROM FRED. STAFF
WHERE DEPT = OOO. DEPT)

END
, #RON6_CHANGED = #ROWS_CHANGED + 1
, #CHANG NG_SQL = CASE

WHEN LAST_CHANGE = CURRENT TI MESTAMP
THEN #CHANG NG_SQL
ELSE #CHANG NG SQL + 1

END
, LAST_CHANGE = CURRENT TI MESTAMP
VWHERE NNN. DEPT <> O00. DEPT
AND OOO. DEPT = DEPT;

END
Figure 543, UPDATE Trigger, Part 3 of 3

Delete Trigger
Thistrigger, which isinvoked for each row deleted, does two things:

e If thereis current only one row for the department, then delete this row. This delete must
be done before the following update, because otherwise this update would get a divide-
by-zero error when changing the AVG value.

¢ Update the department row (if it is still there). If the MAX or MIN values were max or
min (for the old department), but no longer are, then do a sub-query to find the new max
or min.

CREATE TRI GGER FRED. STAFF_DEL
AFTER DELETE ON FRED. STAFF
REFERENCI NG OLD AS OCO

FOR EACH ROW

MODE DB2SQL

BEG N ATOM C

FROM FRED. STAFF_DEPT
VWHERE DEPT

000. DEPT
AND COUNT_ROAS :

1

Figure 544, DELETE Trigger, part 1 of 2

Summary Tables 193

Graeme Birchall ©

UPDATE FRED. STAFF_DEPT
SET COUNT_ROAS = COUNT_ROWS - 1
, SUM SALARY = SUM SALARY - 0OO. SALARY
,AVG SALARY = (SUM SALARY - 00O SALARY)
/ (COUNT_ROWS - 1)
, MAX_SALARY = CASE
WHEN OOO. SALARY < MAX_SALARY
THEN MAX_SALARY
ELSE (SELECT COALESCE(MAX(SALARY), 0)
FROM FRED. STAFF
WHERE DEPT = QOO. DEPT)
END
,MN_SALARY = CASE
WHEN OOO. SALARY > M N_SALARY
THEN M N_SALARY
ELSE (SELECT COALESCE(M N(SALARY), 0)
FROM FRED. STAFF
WHERE DEPT = OOO. DEPT)
END
, #ROAS_CHANGED = #ROWS_CHANGED + 1
, #CHANGI NG SQL = CASE
WHEN LAST CHANGE = CURRENT TI MESTAMP
THEN #CHANG NG_SQL
ELSE #CHANG NG SQL + 1

END
, LAST_CHANGE = CURRENT TI MESTAMP
VWHERE OQQO. DEPT = DEPT;

END

Figure 545, DELETE Trigger, part 2 of 2
Efficiency

The abovetriggers are all efficient in that, for almost al situations, a change to the STAFF
table requires nothing more than a corresponding change to the STAFF_DEPT table. How-
ever, if arow is being removed from a department (either because of an update or adelete),
and the row hasthe current MAX or MIN salary value, then the STAFF table hasto be que-
ried to get anew max or min. Having an index on the DEPT column will enable this query to
run quite quickly.

Notes

194

Unlike with the IBM summary tables, there is no way (above) to stop users directly up-
dating the STAFF_DEPT table, except by using the standard DB2 security setup.

Also, unlike an IBM summary table, the STAFF_DEPT table cannot be maintained by a
LOAD, nor updated using the refresh statement.

A multi-row update (or insert, or delete) uses the same CURRENT TIMESTAMP for all
rows changed, and for all invoked triggers. Therefore, the #CHANGING_SQL field is
only incremented when a new timestamp value is detected.

Roll Your Own

DB2 UDB V8.1 Cookbook ©

Identity Columns and Sequences

Imagine that one has an INV OICE table that records invoices generated. Also imagine that
one wants every new invoice that goes into thistable to get an invoice number value that is
part of a unique and unbroken sequence of ascending values - assigned in the order that the
invoices are generated. So if the highest invoice number is currently 12345, then the next in-
voice will get 12346, and then 12347, and so on.

There isamost never avalid business reason for requiring such an unbroken sequence of val-
ues. Regardless, some people want this feature, and it can, up to a point, be implemented in
DB2. In this chapter we will describe how to do it.

Identity Columns

One can define acolumn in aDB2 table as an "identity column”. This column, which must be
numeric (note: fractional fields not allowed), will be incremented by a fixed constant each
time anew row isinserted. Below is a syntax diagram for that part of a CREATE TABLE
statement that refersto an identity column definition:

\

F column name
L GENERATED ALWAYS }
T BY DEFAULT

[1 — J
(—_ START WITH numeric constant)
1
| INCREMENT BY num

NO MINVALUE
I 1]

data type

FAS IDENTITY t

MINVALUE numeric constant
FNO MAXVALUE
~— MAXVALUE numeric constant

NO CYCLE

ECYCLE j

CACHE20 ——
JE NO CACHE

CACHE integer constant
NO ORDER

IORDER j

Figure 546, Identity Column syntax

Identity Columns and Sequences 195

Graeme Birchall ©

Below is an example of atypical invoice table that uses an identity column that starts at one,
and then goes ever upwards:

CREATE TABLE | NVO CE_DATA
(1 NvO CE# I NTEGER NOT NULL

GENERATED ALWAYS AS | DENTI TY
(START WTH 1
, INCREMENT BY 1

. NO MAXVALUE
., NO CYCLE
, ORDER)
, SALE_DATE DATE NOT NULL
,CUSTOVER ID CHAR(20) NOT NULL
, PRODUCT D | NTEGER NOT NULL
. QUANTI TY | NTEGER NOT NULL
, PRI CE DECI MAL(18, 2) NOT NULL

,PRIMARY KEY (I NVOI CE#)):

Figure 547, Identity column, sample table

Rules and Restrictions

Identity columns come in one of two general flavors:

The value is always generated by DB2.

The valueis generated by DB2 only if the user does not provide avalue (i.e. by default).
This configuration is typically used when the input is coming from an external source
(e.g. data propagation).

Rules

There can only be one identity column per table.
The field cannot be updated if it is defined "generated aways'.

The column type must be numeric and must not allow fractional values. Any integer type
isOK. Decimal isalso fine, aslong as the scale is zero. Floating point is ano-no.

Theidentity column value is generated before any BEFORE triggers are applied. Usea
trigger transition variable to see the value.

A unique index is not required on the identity column, but it isagood idea. Certainly, if
the value is being created by DB2, then a non-unique index is afairly stupid idea.

Unliketriggers, identity column logic isinvoked and used during a LOAD. However, a
load-replace will not reset the identity column value. Use the RESTART command (see
below) to do this. Anidentity column is not affected by a REORG.

Syntax Notes

START WITH defines the start value, which can be any valid integer value. If no start
value is provided, then the default isthe MINV ALUE for ascending sequences, and the
MAXVALUE for descending sequences. If thisvalueis also not provided, then the de-
faultis 1.

INCREMENT BY defines the interval between consecutive values. This can be any valid
integer value, though using zero is pretty silly. The default is 1.

MINVALUE defines (for ascending sequences) the value that the sequence will start at if
no start value is provided. It is also the value that an ascending sequence will begin again
at after it reaches the maximum and loops around. If ho minimum valueis provided, then

196 Identity Columns

DB2 UDB V8.1 Cookbook ©

after reaching the maximum the sequence will begin again at the start value. If that isalso
not defined, then the sequence will begin again at 1, which is the default start value.

For descending sequences, it is the minimum value that will be used before the sequence
loops around, and starts again at the maximum value.

« MAXVALUE defines (for ascending sequences) the value that a sequence will stop at,
and then go back to the minimum value. For descending sequences, it isthe start value (if
no start value is provided), and a so the restart value - if the sequence reaches the mini-
mum and loops around.

¢ CYCLE defines whether the sequence should cycle about when it reaches the maximum
value (for an ascending sequences), or whether it should stop. The default is no cycle.

¢ CACHE defines whether or not to allocate sequences values in chunks, and thus to save
on log writes. The default is no cache, which means that every row inserted causes alog
write (to save the current value).

If a cache value (from 2 to 20) is provided, then the new values are assigned to a common
pool in blocks. Each insert user takes from the pool, and only when all of the values are
used is anew block (of values) allocated and alog write done. If the table is deactivated,
either normally or otherwise, then the values in the current block are discarded, resulting
in gaps in the sequence. Gaps in the sequence of values also occur when an insert is sub-
sequently rolled back, so they cannot be avoided. But don't use the cache if you want to
try and avoid them.

¢ ORDER defines whether al new rows inserted are assigned a sequence number in the
order that they were inserted. The default is no, which means that occasionally arow that
isinserted after another may get a dightly lower sequence number. Thisis the default.

Sequence Examples

The following example uses all of the defaults to start a sequence at one, and thento go up in
increments of one. The inserts will finally die when they reach the maximum allowed value
for thefield type (i.e. for small integer = 32K).

CREATE TABLE TEST_DATA KEY# FI ELD - VALUES ASSI GNED
(KEY# SMALLINT NOT NULL ——===—==—=—=—=—=—=—=—==—===—====—======
GENERATED ALWAYS AS | DENTI TY 123456789 10 11 etc.

,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL
, PRI MARY KEY(KEY#));

Figure 548, Identity column, ascending sequence

The next example defines a sequence that goes down in increments of -3:

CREATE TABLE TEST_DATA KEY# FI ELD - VALUES ASSI GNED
(KEY# SMALLI NT NOT NULL —==——=—=—=—=—=——=—=—=——=—=—=—=—=—=—=—=—=—=—====
GENERATED ALWAYS AS | DENTI TY 6 30-3-6-9-12 -15 etc.

(START WTH 6
, NCREMENT BY -3
., NO CYCLE
., NO CACHE
, ORDER)

,DAT1 SMALLINT NOT NULL

,TS1 TIMESTAMP NOT NULL

, PRI MARY KEY(KEY#));

Figure 549, Identity column, descending sequence

Identity Columns and Sequences 197

Graeme Birchall ©

The next example, which isamazingly stupid, goes nowhere fast. A primary key cannot be
defined on this table:

CREATE TABLE TEST_DATA KEY# VALUES ASSI GNED
(KEY# SVMALLI NT NOT NULL —==—=—=—=—==—=—=—=—=-=—==—=—=—=—=—=—========
GENERATED ALWAYS AS | DENTITY 123 123 123 123 123 123 etc.
(START W TH 123
, MAXVALUE 124
, | NCREMENT BY 0
, NO CYCLE
. NO ORDER)

, DAT1 SMALLI NT NOT NULL
, TS1 TI MESTAMP NOT NULL) ;

Figure 550, Identity column, dumb sequence

The next example uses every odd number up to the maximum (i.e. 6), then loops back to the
minimum value, and goes through the even numbers, ad-infinitum:;

CREATE TABLE TEST_DATA KEY# VALUES ASSI GNED
(KEY# SMALLINT NOT NULL ——===—===—=—=—=—=—===—=—===—===—======
GENERATED ALWAYS AS | DENTI TY 135246246246 etc.

(START WTH 1
, | NCREMENT BY 2

. MAXVAL UE 6
. M NVALUE 2
, CYCLE

., NO CACHE

, ORDER)

, DAT1 SMALLI NT NOT NULL
, TS1 TI MESTAMP NOT NULL);

Figure 551, Identity column, odd values, then even, then stuck
Usage Examples

Below isthe DDL for asimplified invoice table where the primary key is an identity column.
Observe that the invoicet is always generated by DB2:

CREATE TABLE | NVO CE_DATA
(1 NVO CE# I NTEGER NOT NULL
GENERATED ALWAYS AS | DENTI TY
(START WTH 100
, NCREMENT BY 1

., NO CYCLE

, ORDER)
, SALE_DATE DATE NOT NULL
,CUSTOVER ID CHAR(20) NOT NULL
, PRODUCT D | NTEGER NOT NULL
. QUANTI TY | NTEGER NOT NULL
PRI CE DECI MAL(18, 2) NOT NULL

. PRIMARY KEY (INVO CE#)):
Figure 552, Identity column, definition

One cannot provide an input value for the invoice# when inserting into the above table.
Therefore, one must either use a default placeholder, or leave the column out of the insert. An
example of both techniquesis given below:

I NSERT | NTO | NVO CE_DATA
VALUES (DEFAULT, ' 2001-11-22’,’ ABC , 123, 100, 10);

I NSERT | NTO | NvO CE_DATA

(SALE_DATE, CUSTOVER_| D, PRODUCT _I D, QUANTI TY, PRI CE)
VALUES (' 2001-11-23’,’ DEF, 123,100, 10);

Figure 553, Invoice table, sample inserts
Below isthe state of the table after the above two inserts:

198 Identity Columns

DB2 UDB V8.1 Cookbook ©

100 11/ 22/ 2001 ABC 123
101 11/ 23/ 2001 DEF 123

Figure 554, Invoice table, after inserts

Altering Identity Column Options

Imagine that the application is happily collecting invoices in the above table, but your silly
boss is unhappy because not enough invoices, as measured by the ever-ascending invoice#
value, are being generated per unit of time. We can improve things without actually fixing

any difficult business problems by simply altering the invoice# current value and the incre-

ment using the ALTER TABLE ... RESTART command:

ALTER TABLE | NVO CE_DATA
ALTER COLUWN | NVO CE#
RESTART W TH 1000
SET | NCREMENT BY 2;

Figure 555, Invoice table, restart identity column value

Now imagine that we insert two more rows thus:

I NSERT | NTO | NvO CE_DATA
VALUES (DEFAULT, ' 2001-11-24",’ XXX , 123, 100, 10)
, (DEFAULT, ' 2001-11- 25", YYY', 123, 100, 10);

Figure 556, Invoice table, more sample inserts

Our mindless management will now see this data:
INVO CE# SALE DATE CUSTOMER ID PRODUCT_I D

100 11/ 22/ 2001 ABC 123
101 11/ 23/ 2001 DEF 123
1000 11/ 24/ 2001 XXX 123
1002 11/ 25/ 2001 YYY 123

Figure 557, Invoice table, after second inserts

Alter Usage Notes

Asthe following diagram shows, all of the identity column options can be changed using the

ALTER TABLE command:

’ — RESTART
L numeric constantJ

| SET INCREMENT BY ___ numeric constant
|l SET NO MINVALUE

——SET NO MAXVALUE

[MINVALUE — numeric constantJ

— SET NO CYCLE

[MAXVALUE — numeric constantJ

—[CYCLE Q

L SET NO ORDER

—[ORDERQ

Figure 558, Identity Column alter syntax

Identity Columns and Sequences

<

199

Graeme Birchall ©

Restarting the identity column start number to alower number, or to a higher number if the
increment is a negative value, can result in the column getting duplicate values. This can aso
occur if the increment value is changed from positive to negative, or vice-versa. If no valueis
provided for the restart option, the sequence restarts at the previously defined start value.

Gaps in the Sequence

If anidentity column is generated always, and no cacheis used, and the increment valueis 1,
then there will usually be no gapsin the sequence of assigned values. But gaps can occur if an
insert is subsequently rolled out instead of being committed. Below is an illustration of this
problem:

CREATE TABLE CUSTOMERS

(CUST# | NTEGER NOT NULL
GENERATED ALWAYS AS | DENTI TY (NO CACHE)

, CNAME CHAR(10) NOT NULL

, CTYPE CHAR(03) NOT NULL

, PRIMARY KEY (CUST#)):

COW T;

I NSERT | NTO CUSTOMERS
VALUES (DEFAULT,’' FRED ,’ XXX);

SELECT * <<< ANSVER

FROM CUSTOVERS oS- -—=——=—====
ORDER BY 1; CUST# CNAME CTYPE
ROLLBACK; 1 FRED XXX

I NSERT | NTO CUSTOMERS
VALUES (DEFAULT, ' FRED ,’ XXX);

SELECT * <<< ANSVER

FROM CUSTOVERS oS- -—=——=—====
ORDER BY 1; CUST# CNAME CTYPE
COW T; 2 FRED XXX

Figure 559, Overriding the default identity value

One advantage of DB2's identity column implementation is that the value allocation process
isnot apoint of contention in the table. Subsequent users do not have to wait for the first user
to do a commit before they can insert their own rows.

Roll Your Own - no Gaps in Sequence

If oneredlly, really, needs to have a sequence of values with no gaps, then one can do it using
atrigger, but there are costs, in processing time, concurrency, and functionality. To illustrate
how to do it, consider the following table:

CREATE TABLE SALES | NvO CE

(1 NVO CE# I NTEGER NOT NULL
, SALE_DATE DATE NOT NULL
, CUSTOVER | D CHAR(20) NOT NULL
, PRODUCT_I D I NTEGER NOT NULL
, QUANTI TY I NTEGER NOT NULL
, PRI CE DECI MAL(18, 2) NOT NULL

, PRIMARY KEY (1 NVO CE#));
Figure 560, Sample table, roll your own sequencett

200 Identity Columns

DB2 UDB V8.1 Cookbook ©

The following trigger will be invoked before each row is inserted into the above table. It sets
the new invoicet value to be the current highest invoice# value in the table, plus one:

CREATE TRl GGER SALES_| NSERT

NO CASCADE BEFORE

I NSERT ON SALES | NVO CE

REFERENCI NG NEW AS NNN

FOR EACH ROW

MODE DB2SQL

SET NNN. | N\VOI CE# =
(SELECT COALESCE(MAX(| NVO CE#),0) + 1
FROM SALES | NVO CE);

Figure 561, Sample trigger, roll your own sequencet

The good news about the above setup is that it will never result in gaps in the sequence of
values. In particular, if anewly inserted row isrolled back after the insert is done, the next
insert will simply use the same invoice# value. But thereis also bad news:

¢ Only one user can insert at atime, because the select (in the trigger) needs to seethe
highest invoice# in the table in order to compl ete.

e Multiple rows cannot be inserted in asingle SQL statement (i.e. amassinsert). Thetrig-
ger isinvoked before the rows are actually inserted, one row at atime, for al rows. Each
row would see the same, already existing, high invoice#, so the whole insert would die
due to aduplicate row violation.

¢ There may be atiny, tiny chance that if two users were to begin an insert at exactly the
same time that they would both see the same high invoice# (in the before trigger), and so
the last one to complete (i.e. to add a pointer to the unique invoice# index) would get a
duplicate-row violation.

Below are some inserts to the above table. Ignore the values provided in the first field - they
arereplaced in the trigger. And observe that the third insert isrolled out:

I NSERT | NTO SALES | NvO CE VALUES (0,’'2001-06-22',' ABC , 123,10, 1);
I NSERT | NTO SALES_| NVO CE VALUES (0,’ 2001-06-23',’ DEF' , 453, 10,1);
COW T;

I NSERT | NTO SALES_I NVO CE VALUES (0, ' 2001-06-24"," XXX, 888, 10, 1);
ROLLBACK;

I NSERT | NTO SALES_| NVO CE VALUES (0,’ 2001-06-25",’ YYY', 999, 10,1);
COW T;

1 06/22/2001 ABC 123 10 1.00
2 06/23/2001 DEF 453 10 1.00
3 06/25/2001 YYY 999 10 1.00

Figure 562, Sampleinserts, roll your own sequence#

IDENTITY_VAL_LOCAL Function

Imagine that one has just inserted a row, and one now wants to find out what value DB2 gave
the identity column. One callsthe IDENTITY _VAL_LOCAL function to find out. The result
isadecimal (31.0) field. Certain rules apply:

¢ Thefunction returns null if the user has not done a single-row insert in the current unit of
work. Therefore, the function has to be invoked before one does a commit. Having said
this, in some versions of DB2 it seems to work fine after a commit.

Identity Columns and Sequences 201

Graeme Birchall ©

e If the user inserts multiple rows into table(s) having identity columnsin the same unit of
work, the result will be the value obtained from the last single-row insert. The result will
be null if there was none.

« Multiple-row inserts are ignored by the function. So if the user first inserts one row, and
then separately inserts two rows (in asingle SQL statement), the function will return the
identity column value generated during the first insert.

e Thefunction cannot be called in atrigger or SQL function. To get the current identity
column valuein an insert trigger, use the trigger transition variable for the column. The
value, and thus the transition variable, is defined before the trigger is begun.

e If invoked inside an insert statement (i.e. as an input value), the value will be taken from
the most recent (previous) single-row insert done in the same unit of work. The result will
be null if there was none.

e Thevaluereturned by the function is unpredictable if the prior single-row insert failed. It
may be the value from the insert before, or it may be the value given to the failed insert.

« Thefunction is non-deterministic, which means that the result is determined at fetch time
(i.e. not at open) when used in acursor. So if one fetches arow from a cursor, and then
does an insert, the next fetch may get a different value from the prior.

e Thevaluereturned by the function may not equal the value in the table - if either atrigger
or an update has changed the field since the value was generated. This can only occur if
the identity column is defined as being "generated by default”. Anidentity column that is
"generated always' cannot be updated.

* When multiple users are inserting into the same table concurrently, each will see their
own most recent identity column value. They cannot see each other’s.

Below are two examples of the function in use. Observe that the second invocation (done af-
ter the commit) returned avalue, even though it is supposed to return null:

CREATE TABLE | NVO CE_TABLE

(1 NVO CE# I NTEGER NOT NULL
GENERATED ALWAYS AS | DENTI TY

, SALE_DATE DATE NOT NULL

, CUSTOVER I D CHAR(20) NOT NULL

, PRODUCT_I D I NTEGER NOT NULL

, QUANTI TY I NTEGER NOT NULL

PRI CE DECI MVAL(18, 2) NOT NULL

. PRIMARY KEY (I NVOI CE¥)):
COW T;

)

I NSERT | NTO | NvO CE_TABLE
VALUES (DEFAULT, ' 2000-11-22’,’ ABC , 123, 100, 10);

WTH TEMP (1D) AS <<< ANSVER
(VALUES (1 DENTI TY_VAL_LOCAL())) S
SELECT * I D
FROM TEMP;

COW T;
WTH TEMP (I D) AS <<< ANSVEER
(VALUES (| DENTI TY_VAL_LOCAL())) —=====

SELECT * | D
FROM TEMP; c--

Figure 563, IDENTITY_VAL_LOCAL function examples

202 Identity Columns

DB2 UDB V8.1 Cookbook ©

In the next example, two separate inserts are done on the table defined above. The first inserts
asingle row, and so sets the function value to "2". The second is a multi-row insert, and so is
ignored by the function:

I NSERT | NTO | NVO CE_TABLE
VALUES (DEFAULT, ' 2000-11-23’,’ ABC , 123, 100, 10);

I NSERT | NTO | NvO CE_TABLE
VALUES (DEFAULT, ' 2000-11-24’,’ ABC , 123, 100, 10)

, (DEFAULT, ' 2000- 11- 25", ABC' , 123, 100, 10); ANSVEER
SELECT I N\VO CE# AS | NV# I NV# SALE_DATE |ID
, SALE_DATE R Lt --
, | DENTI TY_VAL_LOCAL() AS ID 1 11/22/2000 2
FROM I N\vO CE_TABLE 2 11/23/2000 2
ORDER BY 1; 3 11/24/2000 2
COW T; 4 11/25/2000 2

Figure 564, IDENTITY_VAL_LOCAL function examples
One can aso use the function to get the most recently inserted single row:

SELECT | NVO CE# AS | NV# ANSVER
, SALE_DATE —==—=—=—=—===—=========
, | DENTI TY_VAL_LOCAL() AS ID I NV# SALE DATE |ID
FROM | NVOI CE_TABLE L T -
VWHERE | D = | DENTI TY_VAL_LOCAL(); 2 11/23/ 2000 2

Figure 565, IDENTITY_VAL_LOCAL usage in predicate

. ___|
Sequences

A sequence is amost the same as an identity column, except that it is an object that exists
outside of any particular table.

CREATE SEQUENCE FRED SEQ# VALUES ASSI GNED
AS DECI [\/AL(31) ————=—=—=—=—=—=—=—=—=—=—==—====
START WTH 100 100 102 104 106 etc.
| NCREMENT BY 2
NO M NVALUE
NO MAXVALUE
NO CYCLE
CACHE 20
ORDER;

Figure 566, Create sequence

The options and defaults for a sequence are exactly the same as those for an identity column
(see page 196). Likewise, one can alter a sequence in much the same way as one would alter
the status of an identity column:

ALTER SEQUENCE FRED SEQ# VALUES ASSI GNED
RESTART W TH -55 ————=—=—=—=—=—=—=—==—=—=—=====
I NCREMENT BY -5 -55 -60 -65 -70 etc.
M NVALUE -1000
MAXVALUE +1000
NO CACHE
NO ORDER
CYCLE;

Figure 567, Alter sequence attributes

The only sequence attribute that one cannot change with the ALTER command is the field
type that is used to hold the current value.

Identity Columns and Sequences 203

Graeme Birchall ©

Getting the Sequence Value

Thereis no concept of a current sequence value. Instead one can either retrieve the next or the
previous value (if thereis one). And any reference to the next value will invariably cause the
sequence to be incremented. The following exampleillustrates this:

CREATE SEQUENCE FRED; ANSVER
COW T; ======
SEQH

WTH TEMPL (NL) AS
(VALUES 1 1
UNI ON ALL 5

SELECT N1 + 1 3

FROM TEMPL 4

WHERE N1 < 5 5

)
SELECT NEXTVAL FOR FRED AS SE#
FROM TEMP1;

Figure 568, Selecting the NEXTVAL

Rules and Restrictions

204

Oneretrieves the next or previous value using a"NEXTVAL FOR sequence-name”, or a
"PREVVAL for sequence-name" call.

A NEXTVAL call generates and returns the next value in the sequence. Thus, each call
will consume the returned value, and this remains true even if the statement that did the
retrieval subsequently failsor isrolled back.

A PREVVAL cal returns the most recently generated value for the specified sequence
for the current connection. Unlike when getting the next value, getting the prior value
does not alter the state of the sequence, so multiple calls can retrieve the same vaue. If
no NEXTVAL reference (to the target sequence) has been made for the current connec-
tion, any attempt to get the prior will result in a SQL error.

The NEXTVAL and PREVVAL can be used in the following statements:

e SELECT INTO statement (within the select clause), aslong asthereisno DIS-
TINCT, GROUP BY, UNION, EXECPT, or INTERSECT.

e INSERT statement - with restrictions.

* UPDATE statement - with restrictions.

e SET host variable statement.

e TheNEXTVAL can beused in atrigger, but the PREVVAL cannot.
The NEXTVAL and PREVVAL cannot be used in the following statements:
« Join condition of afull outer join.

* Anywherein aCREATE TABLE or CREATE VIEW statement.

The NEXTVAL cannot be used in the following statements:

e CASE expression

¢ Join condition of ajoin.

e Parameter list of an aggregate function.

Sequences

DB2 UDB V8.1 Cookbook ©

¢ SELECT statement where there is an outer select that contains aDISTINCT,

GROUPBY, UNION, EXCEPT, or INTERSECT.

e Most sub-queries.

There are many more usage restrictions, but you presumably get the picture. See the DB2

SQL Reference for the complete list.

Usage Examples

Below a sequence is defined, then various next and previous values are retrieved:

CREATE SEQUENCE FRED;
COW T;

W TH TEMPL (PRV) AS
(VALUES (PREWAL FOR FRED))
SELECT *

FROM TEMPL;

W TH TEMPL (NXT) AS
(VALUES (NEXTVAL FOR FRED))
SELECT *

FROM TEMPL;

W TH TEMPL (PRV) AS
(VALUES (PREWAL FOR FRED))
SELECT *

FROM TEMPL;

WTH TEMPL (N1) AS
(VALUES 1

UNI ON ALL

SELECT NI + 1
FROM TEMP1
WHERE NL < 5

)

SELECT NEXTVAL FOR FRED AS NXT
, PREWAL FOR FRED AS PRV

FROM TEMP1;

Figure 569, Use of NEXTVAL and PREVVAL expressions

===>

===>

===>

===>

PRV

<error>

OURhWN

NXT

One does not actually have to fetch aNEXTVAL result in order to increment the underlying
seguence. In the next example, some of the rows processed are thrown away halfway thru the
query, but their usage till affects the answer (of the subsequent query):

CREATE SEQUENCE FRED;
COW T,

)

W TH TEMP1 AS
(SELECT 1D
, NEXTVAL FOR FRED AS NXT
FROM STAFF
WHERE |ID < 100

)

SELECT *

FROM TEMP1
VWHERE | D = 50;

W TH TEMPL (NXT, PRV) AS
(VALUES (NEXTVAL FOR FRED

, PREWAL FOR FRED))
SELECT *
FROM TEMPL;

Figure 570, NEXTVAL values used but not retrieved

Identity Columns and Sequences

===>

===>

205

Graeme Birchall ©

Multi-table Usage

Imagine that one wanted to maintain a unigue sequence of values over multiple tables. One
can do this by creating a before insert trigger on each table that replaces whatever value the
user provides with the current one from a common sequence. Below is an example:

CREATE SEQUENCE CUST#

START WTH 1
I NCREMENT BY 1

NO MAXVALUE

NO CYCLE

ORDER,;
CREATE TABLE US_CUSTOMER
(CcusT# I NTEGER NOT NULL
, CNAMVE CHAR(10) NOT NULL
, FRST_SALE DATE NOT NULL
, #SALES I NTEGER NOT NULL

,PRIMARY KEY (CUST#));

CREATE TRI GGER US_CUST_I NS

NO CASCADE BEFORE | NSERT ON US_CUSTOMER
REFERENCI NG NEW AS NNN

FOR EACH ROW MODE DB2SQL

SET NNN. CUST# = NEXTVAL FOR CUST#;

CREATE TABLE | NTL_CUSTOVER

(CUsT# I NTEGER NOT NULL
, CNAVE CHAR(10) NOT NULL
, FRST_SALE DATE NOT NULL
, #SALES I NTEGER NOT NULL

., PRIMARY KEY (CUST#));

CREATE TRI GGER | NTL_CUST_I NS

NO CASCADE BEFORE | NSERT ON | NTL_CUSTOMVER
REFERENCI NG NEW AS NNN

FOR EACH ROW MODE DB2SQL

SET NNN. CUST# = NEXTVAL FOR CUSTH#,

Figure 571, Create tables that use a common sequence

If we now insert some rows into the above tables, we shall find that customer numbers are
assigned in the correct order, thus:

I NSERT | NTO US_CUSTOMER (CNAME, FRST_SALE, #SALES)
VALUES (' FRED ,’ 2002-10-22’, 1)
, (" JOHN |’ 2002-10-23,1);

I NSERT | NTO | NTL_CUSTOVER (CNAVE, FRST_SALE, #SALES)
VALUES (' SUE',’2002-11-12’, 2)
(' DEB', ' 2002-11-13', 2);

COW T;
ANSVEERS
SELECT * CUST# CNAVE FRST_SALE #SALES
FROM US CUSTOMER mmmmm mmmmm immmmmmen —aooe -
ORDER BY CUST# 1 FRED 10/22/2002 1
2 JOHN 10/ 23/ 2002 1
SELECT * CUST# CNAVE FRST_SALE #SALES
FROM I NTL_CUSTOMER ~ emmmm mmmoe ooiiToiin
ORDER BY CUSTH#; 3 SUE 11/ 12/ 2002 2
4 DEB 11/ 13/ 2002 2

Figure 572, Insert into tables with common sequence

206 Sequences

DB2 UDB V8.1 Cookbook ©

One of the advantages of a standalone sequence over afunctionally similar identity columnis
that one can use a PREV VAL expression to get the most recent value assigned (to the user),
even if the previous usage was during a multi-row insert. Thus, after doing the above inserts,
we can run the following query:

W TH TEMP (PREV) AS ANSVER
(VALUES (PREWAL FOR CUST#)) i
SELECT * PREV
FROM TEMP;

4

Figure 573, Get previous value - select

The following does the same as the above, but puts the result in a host variable:

VALUES PREWAL FOR CUST# | NTO : host - var
Figure 574, Get previous value - into host-variable

Using the above, we cannot find out how many rows were inserted in the most recent insert,
nor to which table the insert was done. And we cannot even be sure that the value is correct,
because the insert may have been rolled back after the value was assigned.

Counting Deletes

In the next example, two sequences are created: One records the number of rows deleted from
atable, while the other records the number of delete statements run against the same:

CREATE SEQUENCE DELETE_ROWS
START WTH 1
I NCREMENT BY 1
NO NMAXVALUE
NO CYCLE
ORDER;

CREATE SEQUENCE DELETE_STMIS
START WTH 1
I NCREMENT BY 1

NO MAXVALUE

NO CYCLE

ORDER,;
CREATE TABLE CUSTOMER
(CusT# I NTEGER NOT NULL
, CNAMVE CHAR(10) NOT NULL
, FRST_SALE DATE NOT NULL
, #SALES I NTEGER NOT NULL

,PRIMARY KEY (CUST#));

CREATE TRI GGER CUST_DEL_ROWS

AFTER DELETE ON CUSTOVER

FOR EACH ROW MODE DB2SQL
W TH TEMPL (N1) AS (VALUES(1))
SELECT NEXTVAL FOR DELETE RO
FROM TEMPL;

CREATE TRI GGER CUST_DEL_STMTS

AFTER DELETE ON CUSTOVER

FOR EACH STATEMENT MODE DB2SQL
W TH TEMPL (N1) AS (VALUES(1))
SELECT NEXTVAL FOR DELETE_STMI'S
FROM TEMPL;

Figure 575, Count deletes done to table

Be aware that the second trigger will be run, and thus will update the sequence, regardless of
whether arow was found to delete or not.

Identity Columns and Sequences 207

Graeme Birchall ©

Identity Columns vs. Sequences - a Comparison

First to compare the two types of sequences:

Only one identity column is allowed per table, whereas a single table can have multiple
sequences and/or multiple references to the same sequence.

Identity columns are not supported in databases with multiple partitions.
Identity column segquences cannot span multiple tables. Sequences can.

Sequences require triggers to automatically maintain column values (e.g. during inserts)
in tables. Identity columns do not.

Sequences can be incremented during inserts, updates, deletes (viatriggers), or selects,
whereas identity columns only get incremented during inserts.

Sequences can be incremented (via triggers) once per row, or once per statement. |dentity
columns are always updated per row inserted.

Sequences can be dropped and created independent of any tables that they might be used
to maintain valuesin. Identity columns are part of the table definition.

Identity columns are supported by the load utility. Trigger induced sequences are not.

Now to compare the expressions that get the current status:

208

The IDENTITY_VAL_LOCAL function returns null if no inserts to tables with identity
columns have been done by the current user. In an equivalent situation, the PREVVAL
expression gets anasty SQL error.

The IDENTITY_VAL_LOCAL function ignores multi-row inserts (without telling you).
In asimilar situation, the PREVV AL expression returns the last value generated.

One cannot tell to which tablean IDENTITY_VAL_LOCAL function result refers to.
This can be a problem in one insert invokes ancther insert (viaatrigger), which puts are
row in another table with its own identity column. By contrast, in the PREVV AL func-
tion one explicitly identifies the sequence to be read.

Thereis no equivalent of the NEXTVAL expression for identity columns.

Sequences

DB2 UDB V8.1 Cookbook ©

Recursive SQL

Recursive SQL enables one to efficiently resolve all manner of complex logical structures
that can be really tough to work with using other techniques. On the down side, it isalittle
tricky to understand at first and it is occasionally expensive. In this chapter we shall first
show how recursive SQL works and then illustrate some of the really cute things that one use
it for.

Use Recursion To

e Create sample data.

e Select thefirst "n" rows.

¢ Generate asimple parser.

* Resolve aBill of Materials hierarchy.

* Normalize and/or denormalize data structures.

When (Not) to Use Recursion

A good SQL statement is one that gets the correct answer, is easy to understand, and is effi-
cient. Let us assume that a particular statement is correct. If the statement uses recursive SQL,
it is never going to be categorized as easy to understand (though the reading gets much easier
with experience). However, given the question being posed, it is possible that arecursive
SQL statement is the simplest way to get the required answer.

Recursive SQL statements are neither inherently efficient nor inefficient. Because they often
involve ajoin, itis very important that suitable indexes be provided. Given appropriate in-
dexes, it is quite probable that arecursive SQL statement is the most efficient way to resolve
aparticular business problem. It all depends upon the nature of the question: If every row
processed by the query isrequired in the answer set (e.g. Find all people who work for Bob),
then arecursive statement is likely to very efficient. If only afew of the rows processed by
the query are actually needed (e.g. Find al airline flights from Boston to Dallas, then show
only the five fastest) then the cost of resolving alarge data hierarchy (or network), most of
which isimmediately discarded, can be very prohibitive.

If one wants to get only asmall subset of rowsin alarge data structure, it is very important
that of the unwanted datais excluded as soon as possible in the processing sequence. Some of
the queriesillustrated in this chapter have some rather complicated code in them to do just
this. Also, always be on the lookout for infinitely looping data structures.

Conclusion

Recursive SQL statements can be very efficient, if coded correctly, and if there are suitable
indexes. When either of the above is not true, they can be very slow.

How Recursion Works

Below is a description of avery simple application. The table on the left contains a normal-
ized representation of the hierarchical structure on the right. Each row in the table defines a
relationship displayed in the hierarchy. The PKEY field identifies a parent key, the CKEY

Recursive SQL 209

Graeme Birchall ©

field has related child keys, and the NUM field has the number of times the child occurs
within the related parent.

H ERARCHY AAA
T + |
PKEY | CKEY | NUM +----- +----- +
---------- - | | |
AAA BBB 1 BBB CCC DDD
AAA CCC 5 | |
AAA DDD 20 Fod e -+
CCC EEE 33 |] |
DDD EEE 44 EEE FFF
DDD FFF 5 |
FFF [cee] 5 |
oo + [eee]

Figure 576, Sample Table description - Recursion

List Dependents of AAA

We want to use SQL to get alist of all the dependents of AAA. Thislist should include not
only those items like CCC that are directly related, but aso values such as GGG, which are
indirectly related. The easiest way to answer this question (in SQL) isto use arecursive SQL
statement that goes thus:

W TH PARENT (PKEY, CKEY) AS ANSVEER

(SELECT PKEY, CKEY ========= PROCESSI NG
FROM H ERARCHY PKEY CKEY SEQUENCE
VWHERE PKEY = ' AAA e - - =—=========
UNI ON ALL AAA BBB < 1st pass
SELECT C. PKEY, C. CKEY AAA CCC "
FROM H ERARCHY C AAA DDD

, PARENT P CCC EEE < 2nd pass

WHERE P. CKEY = C. PKEY DDD EEE < 3rd pass

) DDD FFF "

SELECT PKEY, CKEY FFF GGG < 4t h pass

FROM PARENT;
Figure 577, QL that does Recursion

The above statement is best described by decomposing it into its individual components, and
then following of sequence of events that occur:

* The WITH statement at the top defines atemporary table called PARENT.

e The upper part of the UNION ALL isonly invoked once. It does an initial population of
the PARENT table with the three rows that have an immediate parent key of AAA .

e Thelower part of the UNION ALL isrun recursively until there are no more matches to
the join. In thejoin, the current child value in the temporary PARENT table isjoined to
related parent valuesin the DATA table. Matching rows are placed at the front of the
temporary PARENT table. This recursive processing will stop when all of the rowsin the
PARENT table have been joined to the DATA table.

e The SELECT phrase at the bottom of the statement sends the contents of the PARENT
table back to the user’s program.

Another way to look at the above processisto think of the temporary PARENT tableasa
stack of data. This stack isinitially populated by the query in the top part of the UNION ALL.
Next, a cursor starts from the bottom of the stack and goes up. Each row obtained by the cur-
sor isjoined to the DATA table. Any matching rows obtained from the join are added to the
top of the stack (i.e. in front of the cursor). When the cursor reaches the top of the stack, the
statement is done. The following diagram illustrates this process:

210 How Recursion Works

DB2 UDB V8.1 Cookbook ©

KEY > AAA AAA AAA CCC DDD [DDD FFF
KEY > BBB |CCC |DDD EEE EEE |FFF GGG

L ! ? TTl_T

Figure 578, Recursive processing sequence

Notes & Restrictions

Recursive SQL requires that there be a UNION ALL phrase between the two main parts
of the statement. The UNION ALL, unlike the UNION, allows for duplicate output rows,
which is what often comes out of recursive processing.

Recursive SQL isusually afairly efficient. When it involves ajoin similar to the example
shown above, it isimportant to make sure that thisjoin is done efficiently. To thisend,
suitable indexes should always be provided.

The output of arecursive SQL is atemporary table (usually). Therefore, all temporary
table usage restrictions also apply to recursive SQL output. See the section titled "Com-
mon Table Expression” for details.

The output of one recursive expression can be used as input to another recursive expres-
sion in the same SQL statement. This can be very handy if one has multiple logical hier-
archiesto traverse (e.g. First find al of the statesin the USA, then final all of the citiesin
each state).

Any recursive coding, in any language, can get into an infinite loop - either because of
bad coding, or because the data being processed has a recursive value structure. To pre-
vent your SQL running forever, see the section titled "Halting Recursive Processing” on
page 220.

Sample Table DDL & DML

CREATE TABLE HI ERARCHY

(PKEY CHAR(03) NOT NULL
, CKEY CHAR(03) NOT NULL
, NUM SMALLI NT NOT NULL

. PRI MARY KEY(PKEY, CKEY)
, CONSTRAI NT DT1 CHECK (PKEY <> CKEY)
, CONSTRAI NT DT2 CHECK (NUM > 0));

COW T;

CREATE UNI QUE | NDEX HI ER_X1 ON HI ERARCHY
(CKEY, PKEY);

COW T;

| NSERT | NTO HI ERARCHY VALUES
(" AAA' ' BBB', 1),
("AAA ' CCC, 5),

(" AAA' ' DDD , 20),
('cce, ' EEFE, 33),

(' DDD ,’ EEFE , 44),
('DDD ,’' FFF', 5),

("FFF ,"GEG, 5);

COW T;

Figure 57’9, Sample Table DDL - Recursion

Recursive SQL

211

Graeme Birchall ©

Introductory Recursion

This section will use recursive SQL statements to answer a series of simple business ques-
tions using the sample HIERARCHY table described on page 211. Be warned that things are
going to get decidedly more complex as we proceed.

List all Children #1

Find all the children of AAA. Don't worry about getting rid of duplicates, sorting the data, or
any other of the finer details.

W TH PARENT (CKEY) AS ANSVER HI ERARCHY
(SELECT CKEY iSadnb +
FROM HI ERARCHY CKEY PKEY | CKEY | NUM
WHERE PKEY = ' AAA R DA B
UNI ON ALL BBB AAA | BBB 1
SELECT C. CKEY coc AAA | CCC 5
FROM HI ERARCHY C DDD AAA [DDD | 20
, PARENT P EEE CCC |EEE | 33
WHERE ' P. CKEY = C. PKEY EEE DDD |EEE | 44
) FFF DDD | FFF 5
SELECT CKEY GG FFF | GGG 5
FROM PARENT; AR Sttt B +

Figure 580, List of children of AAA

WARNING: Much of the SQL shown in this section will loop forever if the target database
has a recursive data structure. See page 220 for details on how to prevent this.

The above SQL statement uses standard recursive processing. The first part of the UNION
ALL seeds the temporary table PARENT. The second part recursively joins the temporary
table to the source data table until there are no more matches. The fina part of the query dis-
plays the result set.

Imagine that the HIERARCHY table used above is very large and that we also want the above
guery to be as efficient as possible. In this case, two indexes are required; Thefirst, on PKEY,
enablestheinitial select to run efficiently. The second, on CKEY, makes the join in the recur-
sive part of the query efficient. The second index is arguably more important than the first
because the first is only used once, whereas the second index is used for each child of the top-
level parent.

List all Children #2

Find all the children of AAA, includeinthislist the value AAA itself. To satisfy the latter
requirement we will change the first SELECT statement (in the recursive code) to select the
parent itself instead of the list of immediate children. A DISTINCT is provided in order to
ensure that only one line containing the name of the parent (i.e. "AAA") is placed into the
temporary PARENT table.

NOTE: Before the introduction of recursive SQL processing, it often made sense to define
the top-most level in a hierarchical data structure as being a parent-child of itself. For ex-
ample, the HIERARCHY table might contain a row indicating that "AAA" is a child of
"AAA". If the target table has data like this, add another predicate: C.PKEY <> C.CKEY to
the recursive part of the SQL statement to stop the query from looping forever.

212 Introductory Recursion

DB2 UDB V8.1 Cookbook ©

W TH PARENT (CKEY) AS ANSVWER HI ERARCHY
(SELECT DI STI NCT PKEY ====== tomee e +
FROM HI ERARCHY CKEY PKEY | CKEY | NUM
VWHERE PKEY = ' AAA L I ---
UNI ON ALL AAA AAA | BBB 1
SELECT C. CKEY BBB AAA | CCC 5
FROM H ERARCHY C CCC AAA | DDD 20
, PARENT P DDD CCC | EEE 33
VWHERE P. CKEY = C. PKEY EEE DDD | EEE 44
) EEE DDD | FFF 5
SELECT CKEY FFF FFF GG 5
FROM PARENT; GG LR T +

Figure 581, List all children of AAA

In most, but by no means all, business situations, the above SQL statement is more likely to
be what the user really wanted than the SQL before. Ask before you code.

List Distinct Children

Get adistinct list of al the children of AAA. This query differs from the prior only in the use
of the DISTINCT phrasein the final select.

W TH PARENT (CKEY) AS ANSVER HI ERARCHY
(SELECT DI STI NCT PKEY ====== s +
FROM HI ERARCHY CKEY PKEY | CKEY | NUM
VWHERE PKEY = ' AAA LG EEEEEY EEEEE ---
UNI ON ALL AAA AAA | BBB 1
SELECT C. CKEY BBB AAA | CCC 5
FROM HI ERARCHY C CCC AAA | DDD 20
, PARENT P DDD CCC | EEE 33
WHERE P. CKEY = C. PKEY EEE DDD | EEE 44
) FFF DDD | FFF 5
SELECT DI STI NCT CKEY GGG FFF GGG 5
FROM PARENT; R LR +

Figure 582, List distinct children of AAA

The next thing that we want to do is build a distinct list of children of AAA that we can then
use to join to other tables. To do this, we simply define two temporary tables. The first does
the recursion and is called PARENT. The second, called DISTINCT_PARENT, takes the
output from the first and removes duplicates.

W TH PARENT (CKEY) AS ANSWER HI ERARCHY
(SELECT DI STI NCT PKEY e S +
FROM H ERARCHY CKEY PKEY | CKEY | NUM
VHERE PKEY = ' AAA B [T
UNI ON ALL AAA AAA | BBB 1
SELECT C. CKEY BBB AAA | CCC 5
FROM H ERARCHY C ccC AAA |DDD | 20
, PARENT P DDD CCC |EEE | 33

WHERE P. CKEY = C. PKEY EEE DDD |EEE | 44
) FFF DDD | FFF 5
, DI STI NCT_PARENT (CKEY) AS eee FFF | GGG 5
(SELECT DI STI NCT CKEY o +

FROM PARENT

)
SELECT CKEY
FROM DI STI NCT_PARENT;

Figure 583, List distinct children of AAA

Show Item Level

Get alist of all the children of AAA. For each value returned, show itslevel inthelogical
hierarchy relativeto AAA.

Recursive SQL 213

Graeme Birchall ©

W TH PARENT (CKEY, LVL) AS ANSVEER AAA
(SELECT DI STI NCT PKEY, 0 ======== |
FROM HI ERARCHY CKEY LVL 4----- oo +
WHERE PKEY = ' AAA | | |
UNION ALL AAA 0 BBB CCC DDD
SELECT C. CKEY, P.LVL +1 BBB 1 | |
FROM HI ERARCHY C ccc 1 Fo oo
,PARENT P DDD 1 || |
WHERE P. CKEY = C. PKEY EEE 2 EEE FFF
) EEE 2 |
SELECT CKEY, LVL FFF 2 |
FROM PARENT; GG 3 GaG

Figure 584, Show item level in hierarchy

The above statement has a derived integer field called LVL. Intheinitial population of the
temporary table thislevel valueis set to zero. When subsequent levels are reached, thisvalue
in incremented by one.

Select Certain Levels

Get alist of all the children of AAA that are less than three levels below AAA.

W TH PARENT (CKEY, LVL) AS ANSVER HI ERARCHY
(SELECT DI STI NCT PKEY, O ======== s +
FROM HI ERARCHY CKEY LVL PKEY | CKEY | NUM
VWHERE PKEY = ' AAA L EEEEEY BT ---
UNI ON ALL AAA 0 AAA | BBB 1
SELECT C. CKEY, P.LVL +1 BBB 1 AAA | CCC 5
FROM HI ERARCHY C CCC 1 AAA | DDD 20
, PARENT P DDD 1 CCC | EEE 33
WHERE P.CKEY = C. PKEY EEE 2 DDD | EEE 44
) EEE 2 DDD | FFF 5
SELECT CKEY, LVL FFF 2 FFF GGG 5
FROM PARENT R LR +

WHERE LVL < 3;
Figure 585, Select rows where LEVEL < 3

The above statement has two main deficiencies:
e It will run forever if the database contains an infinite loop.

« It may beinefficient because it resolves the whole hierarchy before discarding those lev-
elsthat are not required.

To get around both of these problems, we can move the level check up into the body of the
recursive statement. Thiswill stop the recursion from continuing as soon as we reach the tar-
get level. Wewill haveto add "+ 1" to the check to make it logically equivalent:

W TH PARENT (CKEY, LVL) AS ANSVER AAA

(SELECT DI STI NCT PKEY, 0 ======== |

FROM H ERARCHY CKEY LVL +----- Foemen +

WHERE PKEY = ' AAA | | |

UNI ON ALL AMA 0 BBB CCC

SELECT C. CKEY, P.LVL +1 BBB 1 | |

FROM H ERARCHY C ccc 1 o b

,PARENT P DDD 1 ||

WHERE ~P. CKEY = C. PKEY EEE 2 EEE FFF
AND P.LVL+1 < 3 EEE 2 |

) FFF 2 |

SELECT CKEY, LVL lece

FROM PARENT;
Figure 586, Select rows where LEVEL < 3

214 Introductory Recursion

DB2 UDB V8.1 Cookbook ©

The only difference between this statement and the one before is that the level check is now
donein the recursive part of the statement. This new level-check predicate has a dual func-
tion: It gives us the answer that we want, and it stops the SQL from running forever if the
database happens to contain an infinite loop (e.g. DDD was also a parent of AAA).

One problem with this general statement design isthat it can not be used to list only that data
which pertains to a certain lower level (e.g. display only level 3 data). To answer thiskind of
question efficiently we can combine the above two queries, having appropriate predicatesin
both places (see next).

Select Explicit Level
Get alist of all the children of AAA that are exactly two levels below AAA.

W TH PARENT (CKEY, LVL) AS ANSVEER HI ERARCHY
(SELECT DI STINCT PKEY, 0 e T T L TP +
FROM HI ERARCHY CKEY LVL | PKEY | CKEY | NUM
WHERE PKEY = 'AAA aeei o e
UNION ALL EEE 2 |AAA |BBB 1
SELECT C. CKEY, P.LVL +1 EEE 2 |AAA [CCC 5
FROM HI ERARCHY C FFF 2 |AAA |DDD | 20

,PARENT P CCC |EEE | 33

WHERE P.CKEY = C.PKEY DDD |EEE | 44
AND P.LVL+1 < 3 DDD | FFF 5

) FFF | GGG 5
SELECT CKEY, LWL o +

FROM PARENT
WHERE LVL = 2;

Figure 587, Select rowswhere LEVEL = 2

In the recursive part of the above statement all of the levels up to and including that which is
required are obtained. All undesired lower levels are then removed in the final select.

Trace a Path - Use Multiple Recursions

The output from one recursive expression can be used as input to second recursive expression
in the same SQL statement. This means that one can expand multiple hierarchiesin asingle
statement. For example, one might first get alist of all departments (direct and indirect) in a
particular organization, and then use the department list as a seed to find all employees (direct
and indirect) in each department.

Toillustrate this trick, we shall get alist of all the valuesin the HIERARCHY tablethat arein
apath (of items) that is at least four levels deep. Thiswill require two recursive passes of the
table. In the first we shall work our way down to the fourth level. In the second pass we will
use the fourth-level value(s) as a seed and then work our way back up the hierarchy to find
the relevant parents (direct and indirect).

Recursive SQL 215

Graeme Birchall ©

W TH TEMP1 (CKEY, LVL) AS ANSVER AAA
(SELECT DI STINCT PKEY, 1 ======== |

FROM H ERARCHY CKEY LVL 4----- I +
VHERE PKEY = ' AAA

UNI ON ALL G 4
SELECT C. CKEY, P.LVL +1 FFF 3
FROM H ERARCHY C DDD 2 +

, TEMPL P AAA 1 || |
WHERE P. CKEY = C. PKEY EEE FFF
AND P.LVL < 4

I

) [
, TEMP2 (CKEY, LVL) AS eee
(SELECT CKEY, LVL
FROM TEMP1
WHERE LVL = 4
UNI ON ALL
SELECT C.PKEY, D.LWL -1
FROM H ERARCHY C

, TEMP2 D
WHERE D. CKEY = C. CKEY

)
SELECT *
FROM TEMPZ,

Figure 588, Find all valuesin paths that are at least four deep

Extraneous Warning Message

Some recursive SQL statements generate the following warning when the DB2 parser has
reason to suspect that the statement may run forever:

SQLO0347W The recursive common table expression "GRAEME.TEMP1" may contain an
infinite loop. SQLSTATE=01605

The text that accompanies this message provides detailed instructions on how to code recur-
sive SQL so asto avoid getting into an infinite loop. The trouble is that even if you do exactly
astold you may still get the silly message. To illustrate, the following two SQL statements
are almost identical. Y et the first gets awarning and the second does not:

W TH TEMPL (N1) AS ANSVEER
(SELECT 1D ======
FROM STAFF N1
WHERE 1D = 10 --
UNI ON ALL war n
SELECT N1 +10 10
FROM TEMP1 20
WHERE Nl < 50 30

) 40
SELECT * 50
FROM TEMPL;

Figure 589, Recursion - with warning message

W TH TEMP1 (N1) AS ANSVEER
(SELECT I NT(I D) ======
FROM STAFF N1
WHERE 1D = 10 --
UNI ON ALL 10
SELECT N1 +10 20
FROM TEMP1 30
WHERE N1 < 50 40

) 50
SELECT *

FROM TEMPL;

Figure 590, Recursion - without war ning message

If you know what you are doing, ignore the message.

216 Introductory Recursion

DB2 UDB V8.1 Cookbook ©

. ___|
Logical Hierarchy Flavours

Before getting into some of the really nasty stuff, we best give abrief overview of the various
kinds of logical hierarchy that exist in the real world and how each is best represented in a
relational database.

Some typical data hierarchy flavours are shown below. Note that the three on the left form
one, mutually exclusive, set and the two on the right another. Therefore, it is possible for a
particular hierarchy to be both divergent and unbalanced (or balanced), but not both divergent
and convergent.

DI VERGENT CONVERGENT RECURSI VE BALANCED UNBALANCED
AAA AAA AAAL- - + AAA AAA
+-|+-+ +-|+-+ +|+-+ I +-|+-+ +-|+-+
BbB CbC BbB oo BbB O+ BBB CCC BB OCC
+-|+-+ I+-+-|++ +-|+-+ I I+--+ +|++
D||DD EIEE DI:)D EIEE DI:)D EIEE DI:)D EIEE FlFF DI:)D EIEE

Figure 591, Hierarchy Flavours

Divergent Hierarchy

In this flavour of hierarchy, no object has more than one parent. Each object can have none,
one, or more than one, dependent child objects. Physical objects (e.g. Geographic entities)
tend to be represented in thistype of hierarchy.

Thistype of hierarchy will often incorporate the concept of different layersin the hierarchy
referring to differing kinds of object - each with its own set of attributes. For example, a Geo-
graphic hierarchy might consist of countries, states, cities, and street addresses.

A single table can be used to represent this kind of hierarchy in afully normalized form. One
field in the table will be the unique key, another will point to the related parent. Other fields
in the table may pertain either to the object in question, or to the relationship between the ob-
ject and its parent. For example, in the following table the PRICE field has the price of the
object, and the NUM field has the number of times that the object occurs in the parent.

OBJECTS_RELATES AAA
Fem e + |

KEYO | PKEY | NUM PRI CE e E +
---------- R R | | |

AAA $10 BBB CCC DDD
BBB | AAA 1 $21 [

CCC | AAA 5| $23 +o- ko -t
DDD | AAA 20| $25 | |
EEE | DDD 44| $33 EEE FFF
FFF | DDD 5| $34 |
GG | FFF 5| $44 |
o + GGG

Figure 592, Divergent Hierarchy - Table and Layout

Some database designers like to make the arbitrary judgment that every object has a parent,
and in those cases where thereisno "real” parent, the object considered to be a parent of it-
self. In the above table, this would mean that AAA would be defined as a parent of AAA.
Please appreciate that this judgment call does not affect the objects that the database repre-
sents, but it can have adramatic impact on SQL usage and performance.

Recursive SQL 217

Graeme Birchall ©

Prior to the introduction of recursive SQL, defining top level objects as being self-parenting
was sometimes a good idea because it enabled one to resolve a hierarchy using asimplejoin
without unions. This same process is now best done with recursive SQL. Furthermore, if ob-
jects in the database are defined as self-parenting, the recursive SQL will get into an infinite
loop unless extra predicates are provided.

Convergent Hierarchy

NUMBER OF TABLES: A convergent hierarchy has many-to-many relationships that re-
quire two tables for normalized data storage. The other hierarchy types require but a sin-
gle table.

In this flavour of hierarchy, each object can have none, one, or more than one, parent and/or
dependent child objects. Convergent hierarchies are often much more difficult to work with

than similar divergent hierarchies. Logical entities, or man-made objects, (e.g. Company Di-
visions) often have thistype of hierarchy.

Two tables are required in order to represent this kind of hierarchy in afully normalized form.
One table describes the object, and the other describes the relationships between the objects.

OBJECTS RELATI ONSHI PS AAA
Fomm e + e + |
KEYO | PRI CE PKEY | CKEY | NUM Fonnna R +
-------------------- - | | |
AAA $10 AAA BBB 1 BBB CCC DDD
BBB $21 AAA | CCC 5 | |
Ccc $23 AAA | DDD 20 -+ -+
DDD $25 CCC | EEE 33 |
EEE $33 DDD EEE 44 EEE FFF
FFF $34 DDD FFF 5 |
GGG $44 FFF | GGG 5 I
I + Fom e e e e e - - + [ece]

Figure 593, Convergent Hierarchy - Tables and Layout

One has to be very careful when resolving a convergent hierarchy to get the answer that the
user actually wanted. To illustrate, if we wanted to know how many children AAA hasin the
above structure the "correct” answer could be six, seven, or eight. To be precise, we would
need to know if EEE should be counted twice and if AAA is considered to be a child of itself.

Recursive Hierarchy

WARNING: Recursive data hierarchies will cause poorly written recursive SQL statements
to run forever. See the section titled "Halting Recursive Processing” on page 220 for de-
tails on how to prevent this, and how to check that a hierarchy is not recursive.

In this flavour of hierarchy, each object can have none, one, or more than one parent. Also,
each object can be a parent and/or a child of itself viaanother object, or viaitself directly. In
the business world, this type of hierarchy is almost always wrong. When it does exist, it is
often because a standard convergent hierarchy has gone abit haywire.

This database design is exactly the same as the one for a convergent hierarchy. Two tables are
(usually) required in order to represent the hierarchy in afully normalized form. One table
describes the object, and the other describes the relationships between the objects.

218 Logical Hierarchy Flavours

DB2 UDB V8.1 Cookbook ©

OBJECTS RELATI ONSHI PS AAA <------ +

S + [S + [|
KEYO | PRI CE| PKEY | CKEY | NUM Fommm - L + |
-------------------- --- | |
AAA $10 AAA BBB 1 BBB CCC DDD>- +
BBB $21 AAA CCC 5 [[
CcCC $23 AAA DDD 20 Fot - - -+
DDD $25 CCC EEE 33 |] |
EEE $33 DDD AAA 99 EEE FFF
FFF $34 DDD FFF 5 |
[eee] $44 DDD EEE 44 |

tommmm e + FFF | GGG 5 [eee]

+
Figure 594, Recursive Hierarchy - Tables and Layout

Prior to the introduction of recursive SQL, it took some non-trivial coding root out recursive
data structures in convergent hierarchies. Now it is a no-brainer, see page 220 for details.

Balanced & Unbalanced Hierarchies

In somelogical hierarchies the distance, in terms of the number of intervening levels, from
the top parent entity to its lowest-level child entitiesis the same for al legs of the hierarchy.
Such ahierarchy is considered to be balanced. An unbalanced hierarchy is one where the
distance from atop-level parent to alowest-level child is potentialy different for each leg of
the hierarchy.

AAA << Bal anced Hi erarchy AAA
Unbal anced Hi erarchy >>

| | | | |
BBB CCC DDD | CCC DDD
I I [I
| +- +- + | ++ +-+-
I
F

Figure 595, Balanced and Unbalanced Hierarchies

Balanced hierarchies often incorporate the concept of levels, where alevel is asubset of the
valuesin the hierarchy that are all of the same time and are a so the same distance from the
top level parent. For example, in the balanced hierarchy above each of the three levels shown
might refer to adifferent category of object (e.g. country, state, city). By contrast, in the un-
balanced hierarchy above is probable that the objects being represented are all of the same
general category (e.g. companies that own other companies).

Divergent hierarchies are the most likely to be balanced. Furthermore, balanced and/or diver-
gent hierarchies are the kind that are most often used to do data summation at various inter-
mediate levels. For example, a hierarchy of countries, states, and cities, islikely to be summa-
rized at any level.

Data & Pointer Hierarchies

The difference between adata and apointer hierarchy is not one of design, but of usage. Ina
pointer schema, the main application tables do not store a description of the logical hierarchy.
Instead, they only store the base data. Separate to the main tables are one, or more, related
tables that define which hierarchies each base data row belongs to.

Recursive SQL 219

Graeme Birchall ©

Typically, in apointer hierarchy, the main data tables are much larger and more active than
the hierarchical tables. A banking application is a classic example of this usage pattern. There
is often one table that contains core customer information and several related tables that en-
able oneto do analysis by customer category.

A data hierarchy is an altogether different beast. An example would be a set of tables that
contain information on all that parts that make up an aircraft. In thiskind of application the
most important information in the database is often that which pertains to the relationships
between objects. These tend to be very complicated often incorporating the attributes: quan-
tity, direction, and version.

Recursive processing of adata hierarchy will often require that one does alot more than just
find all dependent keys. For example, to find the gross weight of an aircraft from such a data-
base one will have to work with both the quantity and weight of all dependent objects. Those
objects that span sub-assembles (e.g. a bolt connecting to engine to the wing) must not be
counted twice, missed out, nor assigned to the wrong sub-grouping. As always, such ques-
tions are essentially easy to answer, the trick isto get the right answer.

Halting Recursive Processing

For better or worse, one occasionally encounters recursive hierarchical data structures. This
section describes how to write recursive SQL statements that can process such systems with-
out running forever. There are three general techniques that one can use:

e Stop processing after reaching a certain number of levels.

¢ Keep arecord of where you have been, and if you ever come back, either fail or in some
other way stop recursive processing.

« Keep arecord of where you have been, and if you ever come back, simply ignore that
row and keep on resolving the rest of hierarchy.

Sample Database

The following table is a normalized representation of the recursive hierarchy on the right.
Note that AAA and DDD are both a parent and a child of each other.

+

| | |
DDD | AAA <=== This row EEE FFF
DDD | FFF points back to |
DDD | EEE the hierarchy |
FFF | GGG parent. [eee

Figure 596, Recursive Hierarchy - Sample Table and Layout

Below isthe DML that was used to create the above system. Note that the ">" character is not
allowed in either key column. This was done because this character will be used as adelimiter
in some of the following SQL.

220 Halting Recursive Processing

DB2 UDB V8.1 Cookbook ©

CREATE TABLE TROUBLE

(PKEY CHAR(03) NOT NULL

, CKEY CHAR(03) NOT NULL

, CONSTRAI NT TBX1 PRI MARY KEY(PKEY, CKEY)

, CONSTRAI NT TBCL CHECK (PKEY <> CKEY)

, CONSTRAI NT TBC2 CHECK (LOCATE(’ >’ , PKEY) =0)

, CONSTRAI NT TBC3 CHECK (LOCATE(’ >’ , CKEY) =0));

CREATE UNI QUE | NDEX TBLE_X1 ON TROUBLE

(CKEY, PKEY):
| NSERT | NTO TROUBLE VALUES
(" AAA ' BBB'),
(" AAA " CCC),
(" AAA | DDD'),
(’cce, EEE'),
(' DDD ,’ AAA'),
(' DDD ,’ EEE'),
(’DDD ,’ FFF'),
(' FFF' ,"' GGG);

Figure 597, Sample Table DDL - Recursive Hierarchy
Other Loop Types

In the above table, the beginning object (i.e. AAA) is part of the data-loop. This type of loop
can be found using simpler SQL than what is given below. But aloop that does not include
the beginning object (e.g. AAA pointsto BBB, which pointsto CCC, which points to BBB)
requires the somewhat complicated SQL that is used here.

Stop After "n" Levels

Find all the children of AAA. In order to avoid running forever, stop after four levels.

W TH PARENT (CKEY, LVL) AS ANSVEER TROUBLE
(SELECT DI STI NCT PKEY, O ======== Fommmeeea +
FROM TROUBLE CKEY LVL PKEY| CKEY]
VWHERE PKEY ='AANA aee --- R
UNI ON ALL AAA 0 AAA | BBB
SELECT C. CKEY, P.LVL +1 BBB 1 AAA | CCC
FROM TROUBLE C CCC 1 AAA | DDD

, PARENT P DDD 1 CCC | EEE
WHERE P.CKEY = C. PKEY EEE 2 DDD | AAA
AND P.LVL+1 < 4 AAA 2 DDD | FFF
) EEE 2 DDD | EEE
SELECT CKEY, LVL FFF 2 FFF | GGG
FROM PARENT; BBB 3 Fomee e +
3
3
3

Figure 598, Sop Recursive SQL after "n" levels

In order for the above statement to get the right answer, we need to know before beginning
how many valid dependent levels there are in the hierarchy. Thisinformation is then incorpo-
rated into the recursive part of the statement (see: P.LVI+1 < 4). If thisinformation is not
known, and we guess wrong, we may not find all children of AAA.

A more specific disadvantage of the above statement is that the list of children contains dupli-
cates. These duplicates include not just those specific values that compose the infinite loop
(i.e. AAA and DDD), but also any children of either of the above.

Stop After "n" Levels - Remove Duplicates
Get adistinct list of the children of AAA. Stop searching after four levels.

Recursive SQL 221

Graeme Birchall ©

W TH PARENT (CKEY, LVL) AS ANSVEER
(SELECT DI STI NCT PKEY, 0 s===========
FROM TROUBLE CKEY LVL NuM
VWHERE PKEY = ' AAA’
UNI ON ALL AAA 0o 2
SELECT C. CKEY, P.LVL +1 BBB 1 2
FROM TROUBLE C CCC 1 2
, PARENT P DDD 1 2
VWHERE P.CKEY = C. PKEY EEE 2 2
AND P.LVL+1 < 4 AAA 2 1
) eeel 3 1
., NO_DUPS (CKEY, LVL, NUM AS
(SELECT CKEY, M N(LVL), COUNT(*)
FROM PARENT
GROUP BY CKEY
)
SELECT CKEY, LVL, NUM
FROM NO_DUPS; TROUBLE
R + AAA <------ +
PKEY| CKEY [[
e +----- +----- + [
AAA | BBB | [| [
AAA | CCC BBB CCC DDD>-+
AAA | DDD [[
CCC | EEE +-+ - - -+
This row ===> DDD | AAA [| |
points back to DDD | FFF EEE FFF
the hierarchy DDD | EEE |
parent. FFF | GGG |
B + GGG

Figure 599, Sop Recursive QL after "n" levels, Remove duplicates

The recursive part of the above statement is the same as the prior. What differsisthe use of a
second temporary table called NO_DUPS in which the duplicate rows found in the PARENT
table are removed. The true level of aduplicated item is deemed to be lowest value found.

Note that two temporary tables are used above. The use of the second is arguably unnecessary
because the grouping that it does could equally well be done in the final select. The codeis
written the way it is because it enables one to use the output from the GROUP BY inajoin
with another table (instead of just doing a plain select).

Stop After "n" Levels - Show Data Paths

Find all the children of AAA. For each child, display its relationship to AAA. In order to
avoid running forever, stop after four levels.

W TH PARENT (CKEY, LVL, PATH, LOC) AS ANSVEER
(SELECT DI STI NCT PKEY, O ————————————————————————=—=—=
, VARCHAR(PKEY, 20) CKEY LVL PATH LOC
0 e e i ---
FROM TROUBLE AAA 0 AAA 0
WHERE PKEY = ' AAA’ BBB 1 AAA>BBB 0
UNI ON ALL CCC 1 AAA>CCC 0
SELECT C. CKEY, P.LVL +1 DDD 1 AAA>DDD 0
,P.PATH | ' >'| | C. CKEY EEE 2 AAA>CCC-EEE 0
| LOCATE(C. CKEY| | ' >’ , P. PATH) AAA 2 AAASDDD>AAA 1
FROM TROUBLE C EEE 2 AAA>DDD>EEE 0
, PARENT P FFF 2 AAA>DDD>FFF 0
WHERE P. CKEY = C PKEY BBB 3 AAA>DDD>AAA>BBB O
AND P.LVL+1 < 4 CCC 3 AAASDDD>AAA>CCC O
) DDD 3 AAA>DDD>AAA>DDD 5
SELECT CKEY, LVL, PATH, LOC GGG 3 AAASDDD>FFF>GGG 0

FROM PARENT;
Figure 600, Sop Recursive SQL after "n" levels, Show data paths

222 Halting Recursive Processing

DB2 UDB V8.1 Cookbook ©

The PATH field above shows the relationship between each child object and the top-level
parent of the hierarchy. In the top part of the select statement, thisfield is given the value
AAA and is defined as VARCHAR. During subsequent recursive processing, the current

child key is appended on theright. A ">" symbol is placed between each key value to enhance
readability.

The LOC field indicatesif the current child key value has been looked at before. It does this
by using the LOCATE function to search the PATH field for the existence of the child key
string. There are several important things to note here:

e ThePATH value searched by the LOCATE function is not the one that you see displayed
above. The above PATH field shows the result after the current child key has been ap-
pended. The PATH field searched is the one that was there before the append occurred.
This difference does not affect the answer but it is worth remembering.

e Onehasto define the PATH field to be long enough to support the maximum number of
levelsin the hierarchy. For example, it is twenty bytes long above, which is enough to go
down five layers. If you're not sure how many levelsthere are - make the field very long.
Because it isaVARCHAR field, it only uses space when needed.

e The TROUBLE table was defined such that neither key field can contain the ">" charac-
ter. Thisis not an issue here, but it will be in the next statement.

Stop After "n" Rows

This can be done using recursive SQL, but it is neither easy nor very efficient (unless alot of

care istaken). Use instead the ROW_NUMBER function (see page 62).

Find all Children, Ignore Data Loops

Find all the children of AAA. Thistime, don't use levels to avoid going forever.

W TH PARENT (CKEY, LVL, PATH) AS ANSVEER
(SELECT DI STI NCT PKEY, O —o———-——————————————=—===
, VARCHAR(PKEY, 20) CKEY LVL PATH
FROM TROUBLE — eeee eee e oa o
WHERE PKEY = ' AAA’ AAA 0 AAA
UNI ON ALL BBB 1 AAA>BBB
SELECT C. CKEY, P.LVL +1 CCC 1 AAA>CCC
. P. PATH | ' >' | | C. CKEY DDD 1 AAA>DDD
FROM TROUBLE C EEE 2 AAA>CCC>EEE
, PARENT P EEE 2 AAA>DDD>EEE
WHERE P. CKEY = C. PKEY FFF 2 AAA>DDD>FFF
AND LOCATE(C. CKEY| | ' >, P. PATH) =0 GGG 3 AAA>DDD>FFF>GGG

)
SELECT CKEY, LVL, PATH
FROM PARENT;

Figure 601, Recursive QL, Ignore data loops (don't retrieve)

Observe the LOCATE predicate in the recursive part of the above SQL statement. This check
will regject any row where the current child key value can be found in the related PATH field
(i.e. the current row has aready been processed). In the PATH field, the >’ isused as a delim-
iter to ensure that no two concatenated key values can have a combined string value that
equates to the current child key. This trick only works because the table was defined as not
allowing a’>"in either key field (see page 221 for DDL).

For most hierarchies that contain infinite loops, the above SQL islikely to be more efficient
than something similar that uses a level-stop check. Thisis because the above statement will

Recursive SQL 223

Graeme Birchall ©

reject an unwanted row immediately it is encountered whereas the level-stop technique gets
the bad along with the good then removes the former in subsequent processing.

Find all Children, Mark Data Loops
Find all children of AAA. Also, mark the first value in any infinitely looping data structure.

W TH PARENT (CKEY, LVL, PATH) AS ANSVER
(SELECT DI STI NCT PKEY, O —————————————————————=—=—=
, VARCHAR(PKEY, 20) CKEY LVL PATH
FROM TROUBLE — emee e e
WHERE PKEY = ' AAA’ AAA 0 AAA
UNI ON ALL BBB 1 AAA>BBB
SELECT CASE CcCC 1 AAA>CCC
WHEN LOCATE(C. CKEY| |’ >’ , P. PATH) >0 DDD 1 AAASDDD
THEN CHAR(’ >>>', 3) EEE 2 AAA>CCC>EEE
ELSE C. CKEY >>> 2 AAA>DDD>AAA
END EEE 2 AAA>DDD>EEE
,P.LVL +1 FFF 2 AAA>DDD>FFF
'P.PATH| | >' | | C. CKEY GG 3 AAASDDD>FFF>GGG
FROM TROUBLE C
, PARENT P

WHERE P.CKEY = C. PKEY

)
SELECT CKEY, LVL, PATH
FROM PARENT;

Figure 602, Recursive QL, Mark data loops

Any row in the above answer set that has a’>>>"in the CKEY 2 refersto an infinite loop. The
CKEY column contains the first key in the loop and the PATH column contains a description
of the loop. For al other rows, the CKEY 2 field contains the current lowest-level child.

A CASE statement is used above to determine what value to put in the CKEY 2 field. If the
current child row has been processed before, the string >>>" is used, else CKEY used. This
key-value substitution is required in order to stop the statement from going forever.

Find all Data Loops - Only

A variation on the above SQL statement can be used to list just those rows that are part of a
dataloop (e.g. for database integrity checking). Simply add a single predicate to the last SE-
LECT statement that only gets those rows where the CKEY is™>>>",

W TH PARENT (CKEY, PATH) AS ANSVER TROUBLE

(SELECT DI STI NCT PKEY S +
, VARCHAR(PKEY, 20) PATH PKEY| CKEY

FROM TROUBLE e

WHERE PKEY = ' AAA AAA>DDD>AAA AAA | BBB

UNI ON ALL AAA | CCC

SELECT CASE AAA | DDD

WHEN LOCATE(C. CKEY| | ' >, P. PATH) >0 CCC | EEE

THEN CHAR(® >>> , 3) DDD | AAA

ELSE C. CKEY DDD | FFF

END DDD | EEE

. P. PATH| |’ > | | C. CKEY FFF | GGG

FROM TROUBLE C
, PARENT P

WHERE P.CKEY = C. PKEY

)

SELECT PATH

FROM PARENT

VWHERE CKEY = ' >>>';

Figure 603, Recursive QL, List data loops

224 Halting Recursive Processing

DB2 UDB V8.1 Cookbook ©

Stop if Data Loops

Find in all the children of AAA. If adata-loop is encountered during processing, stop the SQL
statement and return a SQL error. Use the RAISE_ERROR function to do this.

W TH PARENT ANSWER TROUBLE
(CKEY, LVL, PATH) AS ====== e +
(SELECT DI STI NCT CKEY. .. PKEY| CKEY]
PKEY
, 0 <error> AAA | BBB
, VARCHAR(PKEY, 20) AAA | CCC
FROM TROUBLE AAA | DDD
WHERE PKEY = ' AAA CCC | EEE
UNI ON ALL DDD | AAA
SELECT CASE DDD | FFF
WHEN LOCATE(C. CKEY| |’ >, P. PATH > 0 DDD | EEE
THEN RAI SE_ERROR(’ 70001’ , FFF | GGG
"ERROR: LOOP | N DATABASE FOUND) Fomm e e o +
ELSE C. CKEY
END
, P.LVL +1

" P. PATH| | ' > | | C. CKEY

FROM TROUBLE C
,PARENT P

WHERE P. CKEY = C. PKEY

)
SELECT CKEY, LVL, PATH
FROM PARENT;

Figure 604, Recursive QL, Set error if data loop found

The above SQL uses a CASE statement to determine what value to put in the PATH field. If
the current child row has been processed before, the RAISE_ERROR function is used to gen-
erate a SQL error (which stops the statement), else CKEY used. Another way to do the same
thing isto delay the RAISE_ERROR processing till the final SELECT. The advantage of do-
ing thisisthat at least some rows will be fetched before the failure occurs.

W TH PARENT ANSWER TROUBLE
(CKEY, LVL, PATH) AS ====== R +
(SELECT DI STI NCT CKEY. . . PKEY| CKEY|
PKEY
, 0 AAA AAA | BBB
, VARCHAR(PKEY, 20) BBB AAA | CCC
FROM TROUBLE CCC AAA | DDD
WHERE PKEY = ' AAA DDD CCC | EEE
UNI ON ALL EEE DDD | AAA
SELECT CASE <error> DDD | FFF
VWHEN LOCATE(C. CKEY| |’ >', P. PATH > 0 DDD | EEE
THEN CHAR(®' >>>' | 3) FFF | GGG
ELSE C. CKEY - +
END
, P.LVL +1

" P. PATH| | ' > | | C. CKEY

FROM TROUBLE C
,PARENT P

WHERE P. CKEY = C. PKEY

)
SELECT CASE
WHEN LOCATE(’ >’ , CKEY) > 0
THEN RAI SE_ERROR(’ 70001’
" ERROR. LOOP | N DATABASE FOUND)
ELSE CKEY
END AS CKEY
,LVL, PATH
FROM PARENT;

Figure 605, Recursive QL, Set error if data loop found

Recursive SQL 225

Graeme Birchall ©

Note that the above trick does not work if the field containing the RAISE_ERROR function is
inan ORDER BY list. Thisis because the function will be processed during the row sort that
occurs during the cursor open, and not at fetch time.

Working with Other Key Types

In much of the above SQL the ">" character has been used for two special purposes. On the
one hand, it helps to improve the general readability of the output. More importantly, it also
acts as a key-value separator when the LOCATE function is used to look for prior references
to the current key in the PATH field. It isfor this reason that the table DDL disallows the use
of the">" in either of the two key columns.

If one wishesto use SQL similar to that shown above (i.e. using the ">" technique) then one
is going to have to set-aside some special character in the keys of the target table(s) accord-
ingly. Most applications should have no trouble finding at least one ASCII character that is
suitable for the task. In the unlikely event that the key fields are defined FOR BIT DATA and
actually contain the full range of valid binary values, oneis simply out of luck.

Numeric Keys

To use the techniques described above (i.e. with the ">" value) on numeric keys one simply
uses the CHAR function to convert the number to avalid character. The rest is unchanged.

Stopping Simple Recursive Statements Using FETCH FIRST code

Very simple recursive SQL statements (i.e. not the ones shown above) can be stopped in mid-

stream using the FETCH FIRST n ROWS ONLY syntax. For example, the following state-
ment will only fetch five rows:

WTH TEMP (COL1) AS ANSWER
(VALUES (SMALLINT(1)) ======
UNI ON ALL coLl
SELECT COL1 + 1
FROM TEMP) 1
SELECT cCOL1 2
FROM TEMP 3
FETCH FI RST 5 ROWS ONLY; 4
5

Figure 606, Sop recursion using FETCH FIRST n ROWS ONLY, works

The FETCH FIRST syntax stops the above recursive statement because the output from each
recursive call is not sent to atemporary file, but rather is passed straight to the output buffer.
After five rows are fetched, the whole cursor, including the recursion, stops.

The next example fails because, in this case, the output from the recursion has to be sent to a
work file (for sorting) before it can be fetched. Consequently, the recursion runs for awhile
(inthis case until COL1 islarger than the largest allowable smallint value), then fails with an
overflow error:

WTH TEMP (COL1) AS ANSVER
(VALUES (SMALLINT(1)) ======
UNI ON ALL error
SELECT COL1 + 1
FROM TEMP)

SELECT CO.1
FROM TEMP
ORDER BY COL1
FETCH FI RST 5 ROAS ONLY;

Figure 607, Sop recursion using FETCH FIRST n ROWS ONLY, not work

226 Halting Recursive Processing

DB2 UDB V8.1 Cookbook ©

Clean Hierarchies and Efficient Joins

Introduction

One of the more difficult problemsin any relational database system involves joining across
multiple hierarchical data structures. The task is doubly difficult when one or more of the hi-
erarchiesinvolved is a data structure that has to be resolved using recursive processing. In this
section, we will describe how one can use a mixture of tables and triggers to answer this kind
of query very efficiently.

A typical question might go as follows: Find all matching rows where the customer isin some
geographic region, and the item sold is in some product category, and person who made the
saleisin some company sub-structure. If each of these qualifications involves expanding a
hierarchy of object relationships of indeterminate and/or nontrivial depth, then asimplejoin
or standard data denormalization will not work.

In DB2, one can answer thiskind of question by using recursion to expand each of the data
hierarchies. Then the query would join (sans indexes) the various temporary tables created by
the recursive code to whatever other data tables needed to be accessed. Unfortunately, the
performance will probably be lousy.

Alternatively, one can often efficiently answer this general question using a set of suitably
indexed summary tables that are an expanded representation of each data hierarchy. With
these tables, the DB2 optimizer can much more efficiently join to other data tables, and so
deliver suitable performance.

In this section, we will show how to make these summary tables and, because it is a prerequi-
site, also show how to ensure that the related base tables do not have recursive data structures.
Two solutions will be described: One that is simple and efficient, but which stops updates to
key values. And another that imposes fewer constraints, but which is a bit more complicated.

Limited Update Solution

Below on the left is ahierarchy of dataitems. Thisisatypica unbalanced, non-recursive data
hierarchy. In the center is a normalized representation of this hierarchy. The only thing that is
perhaps a little unusual hereisthat an item at the top of ahierarchy (e.g. AAA) is deemed to
be a parent of itself. On theright is an exploded representation of the same hierarchy.

HI ERARCHY#1 EXPL ODED#1
AAA I + I I +
| | KEYY| PKEY| DATA | PKEY| CKEY| LVL
BBB R e I PRl EEE R
| | AAA | AAA | SOVE DATA | AAA [AAA | O
Foooo- + | BBB | AAA | MORE DATA | AAA [BBB | 1
| | CCC | BBB | MORE JUNK | AAA [CCC | 2
CCC EEE | DDD | CCC | MORE JUNK | AAA [DDD | 3
| | EEE | BBB | JUNK DATA | AAA |EEE | 2
DDD e + BBB |BBB | O
BBB |[CCC | 1
BBB |DDD | 2
BBB |EEE | 1
ccc|occc| o
ccC |DDD | 1
DDD [DDD | O
EEE |[EEE | O
oo +

Figure 608, Data Hierarchy, with normalized and exploded representations

Recursive SQL 227

Graeme Birchall ©

Below isthe CREATE code for the above normalized table and a dependent trigger:

CREATE TABLE H ERARCHY#1
(KEYY CHAR(3) NOT NULL

,PKEY CHAR(3) NOT NULL

,DATA VARCHAR(10)

, CONSTRAI NT HI ERARCHY11 PRI MARY KEY(KEYY)

, CONSTRAI NT HI ERARCHY12 FOREI GN KEY(PKEY)
REFERENCES HI ERARCHY#1 (KEYY) ON DELETE CASCADE);

CREATE TRI GGER HI R#1_UPD
NO CASCADE BEFORE UPDATE OF PKEY ON HI ERARCHY#1
REFERENCI NG NEW AS NNN
OLD AS Q0O
FOR EACH ROW MODE DB2SQL
WHEN (NNN. PKEY <> 0O0O. PKEY)
SI GNAL SQLSTATE ’ 70001’ (’ CAN NOT UPDATE PKEY'):

Figure 609, Hierarchy table that does not allow updates to PKEY
Note the following:

e TheKEYY column isthe primary key, which ensures that each value must be unique,
and that this field can not be updated.

* ThePKEY columnisaforeign key of the KEY'Y column. This means that this field must
awaysrefer to avalid KEY'Y vaue. Thisvalue can either be in another row (if the new
row is being inserted at the bottom of an existing hierarchy), or in the new row itsdlf (if a
new independent data hierarchy is being established).

e The ON DELETE CASCADE referentia integrity rule ensures that when arow is de-
leted, all dependent rows are also deleted.

¢ TheTRIGGER prevents any updates to the PKEY column. Thisis a BEFORE trigger,
which means that it stops the update before it is applied to the database.

All of the above rules and restrictions act to prevent either an insert or an update for ever act-
ing on any row that is not at the bottom of a hierarchy. Consequently, it is not possible for a
hierarchy to ever exist that contains aloop of multiple dataitems.

Creating an Exploded Equivalent

Once we have ensured that the above table can never have recursive data structures, we can
define a dependent table that holds an exploded version of the same hierarchy. Triggers will
be used to keep the two tables in sync. Here isthe CREATE code for the table:

CREATE TABLE EXPLODED#1
(PKEY CHAR(4) NOT NULL
,CKEY CHAR(4) NOT NULL
,LVL SMALLINT NOT NULL
, PRI MARY KEY(PKEY, CKEY)) ;

Figure 610, Exploded table CREATE statement

The following trigger deletes all dependent rows from the exploded table whenever arow is
deleted from the hierarchy table:

CREATE TRI GGER EXP#1_DEL
AFTER DELETE ON HI ERARCHY#1
REFERENCI NG OLD AS OO0
FOR EACH ROW MODE DB2SQL
DELETE
FROM EXPLCODED#1
VWHERE CKEY = OO0 KEYY;

Figure 611, Trigger to maintain exploded table after delete in hierarchy table

228 Clean Hierarchies and Efficient Joins

DB2 UDB V8.1 Cookbook ©

The next trigger is run every time arow isinserted into the hierarchy table. It uses recursive
code to scan the hierarchy table upwards, looking for al parents of the new row. The result-
set is then inserted into the exploded table:

CREATE TRI GGER EXP#1_I NS HI ERARCHY#1 EXPL ODED#1
AFTER | NSERT ON HI ERARCHY#1 T S S +
REFERENCI NG NEW AS NNN | KEYY| PKEY| DATA| | PKEY| CKEY| LVL
FOR EACH ROW MODE DB2SQL [-cmcfmmmn]mmm| ||| ---
| NSERT | ABA [AAA [S...| [AAA [ABA | O
INTO EXPLODED#1 IBBB [AAA [M..| [AAA [BBB| 1
W TH TEMP(PKEY, CKEY, LVL) AS |CCC [BBB [M..| |[AAA [CCC| 2
(VALUES (NNN. KEYY |DDD [CCC [M..| |[AAA [DDD| 3
, NNN. KEYY |EEE [BBB |J...| |AAA |[EEE | 2
. 0) S + |BBB[BBB| O
UNI ON ALL BBB |[CCC | 1
SELECT N. PKEY BBB |DDD | 2
, NNN. KEYY BBB |EEE | 1
T.LVL +1 ccc|occ| 0
FROM TEMP T ccc |DDD | 1
, H ERARCHY#1 N DDD [DDD | O
WHERE N.KEYY = T.PKEY EEE |[EEE | ©
AND N. KEYY <> N. PKEY RS +
)
SELECT *
FROM TEMP;

Figure 612, Trigger to maintain exploded table after delete in hierarchy table

There is no update trigger because updates are not allowed to the hierarchy table.
Querying the Exploded Table

Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will aways return the current state of the datain the related hierarchy table.

SELECT *
FROM EXPLODED#1
WHERE PKEY = : host-var
ORDER BY PKEY
, CKEY
, LVL;
Figure 613, Querying the exploded table

Full Update Solution

Not al applications want to limit updates to the data hierarchy as was done above. In particu-
lar, they may want the user to be able to move an object, and al its dependents, from one
valid point (in a data hierarchy) to another. This means that we cannot prevent valid updates
to the PKEY value.

Below isthe CREATE statement for a second hierarchy table. The only difference between
this table and the previous one is that thereis now an ON UPDATE RESTRICT clause. This
prevents updates to PKEY that do not point to avalid KEYY value — either in another row, or
in the row being updated:

CREATE TABLE H ERARCHY#2

(KEYY CHAR(3) NOT NULL

,PKEY CHAR(3) NOT NULL

,DATA VARCHAR(10)

, CONSTRAI NT NO_LOOPS21 PRI MARY KEY(KEYY)

, CONSTRAI NT NO_LOOPS22 FOREI GN KEY(PKEY)

REFERENCES HI ERARCHY#2 (KEYY) ON DELETE CASCADE
ON UPDATE RESTRI CT);

Figure 614, Hierarchy table that allows updates to PKEY

Recursive SQL 229

Graeme Birchall ©

The previous hierarchy table came with atrigger that prevented all updates to the PKEY field.
This table comes instead with atrigger than checks to see that such updates do not result in a
recursive data structure. It starts out at the changed row, then works upwards through the
chain of PKEY values. If it ever comes back to the original row, it flags an error:

CREATE TRI GGER HI R#2_UPD HI ERARCHY#2
NO CASCADE BEFORE UPDATE OF PKEY ON HI ERARCHY#2 e as +
REFERENCI NG NEW AS NNN | KEYY| PKEY| DATA
OLD AS 000 [-cc|-m-|----]
FOR EACH ROW MODE DB2SQL | ABA | AAA | S. . .|
WHEN (NNN. PKEY <> OO0O. PKEY [BBB | AAA [M . .|
AND ~NNN. PKEY <> NNN. KEYY) |CCC [BBB [M. . |
W TH TEMP (KEYY, PKEY) AS |DDD [CCC [M. .|
(VALUES (NNN. KEYY | EEE |BBB | J...|
, NNN. PKEY) s +

UNI ON ALL
SELECT LP2. KEYY
, CASE

WHEN LP2. KEYY = NNN. KEYY
THEN RAI SE_ERROR(’ 70001’ ,’ LOOP FOUND)
ELSE LP2. PKEY

END
FROM HI ERARCHY#2 LP2
, TEMP TMP

WHERE TMP. PKEY = LP2. KEYY
AND TMP. KEYY <> TMP. PKEY

)
SELECT *
FROM TEMP;

Figure 615, Trigger to check for recursive data structures before update of PKEY

NOTE: The above is a BEFORE trigger, which means that it gets run before the change is
applied to the database. By contrast, the triggers that maintain the exploded table are all
AFTER triggers. In general, one uses before triggers check for data validity, while after
triggers are used to propagate changes.

Creating an Exploded Equivalent

The following exploded table is exactly the same as the previous. It will be maintained in
sync with changes to the related hierarchy table:

CREATE TABLE EXPLODED#2
(PKEY CHAR(4) NOT NULL
,CKEY CHAR(4) NOT NULL
,LVL SMALLINT NOT NULL
, PRI MARY KEY(PKEY, CKEY)) ;

Figure 616, Exploded table CREATE statement

Three triggers are required to maintain the exploded table in sync with the related hierarchy
table. The first two, which handle deletes and inserts, are the same as what were used previ-
ously. Thelast, which handles updates, is new (and quite tricky).

The following trigger deletes all dependent rows from the exploded table whenever arow is
deleted from the hierarchy table;

CREATE TRI GGER EXP#2_DEL
AFTER DELETE ON H ERARCHY#2
REFERENCI NG OLD AS OCO
FOR EACH ROW MODE DB2SQL
DELETE
FROM EXPLODED#2
VWHERE CKEY = OQQO. KEYY;

Figure 617, Trigger to maintain exploded table after delete in hierarchy table

230 Clean Hierarchies and Efficient Joins

DB2 UDB V8.1 Cookbook ©

The next trigger is run every time arow isinserted into the hierarchy table. It uses recursive
code to scan the hierarchy table upwards, looking for al parents of the new row. The result-

set is then inserted into the exploded table:

WHERE N KEYY = T.PKEY
AND N. KEYY <> N. PKEY

)
SELECT *
FROM TEMP;

Figure 618, Trigger to maintain exploded table after insert in hierarchy table

CREATE TRI GGER EXP#2_I NS HI ERARCHY#2 EXPL ODED#2
AFTER | NSERT ON HI ERARCHY#2 T S S
REFERENCI NG NEW AS NNN | KEYY| PKEY| DATA| | PKEY| CKEY| LVL
FOR EACH ROW MODE DB2SQL [-cmcfmmmn]mmm| ||| ---
| NSERT | ABA [AAA [S...| [AAA [ABA | O
INTO EXPLODED#2 IBBB [AAA [M..| [AAA [BBB| 1
W TH TEMP(PKEY, CKEY, LVL) AS |CCC [BBB [M..| |[AAA [CCC| 2
(SELECT NNN. KEYY |DDD [CCC [M..| |[AAA [DDD| 3
, NNN. KEYY |EEE [BBB |J...| |AAA |[EEE | 2
.0 S + |BBB[BBB| O
FROM H ERARCHY#2 BBB |[CCC | 1
WHERE KEYY = NNN. KEYY BBB |DDD | 2
UNI ON ALL BBB |EEE | 1
SELECT N. PKEY ccc|occ| 0
, NNN. KEYY ccc |DDD | 1
T.LVL +1 DDD [DDD | O
FROM TEMP T EEE |[EEE | ©
, H ERARCHY#2 N RS

The next trigger isrun every time a PKEY value is updated in the hierarchy table. It deletes
and then reinserts all rows pertaining to the updated object, and all it’'s dependents. The code
goes asfollows:

Delete all rowsthat point to children of the row being updated. The row being updated is

also considered to be a child.

In the following insert, first use recursion to get alist of al of the children of the row that
has been updated. Then work out the relationships between all of these children and all of

their parents. Insert this second result-set back into the exploded table.

CREATE TRI GGER EXP#2_UPD
AFTER UPDATE OF PKEY ON HI ERARCHY#2
REFERENCI NG OLD AS OO0
NEW AS NNN
FOR EACH ROW MODE DB2SQL
BEG N ATOM C

DELETE
FROM
VWHERE

EXPLODED#2
CKEY I'N

(SELECT CKEY

| NSERT
I NTO

FROM EXPLODED#2
VWHERE PKEY = OOO. KEYY) ;

EXPLODED#2

W TH TEMPL(CKEY) AS
(VALUES (NNN. KEYY)

UNI ON ALL
SELECT N. KEYY
FROM TEMP1 T
, H ERARCHY#2 N
WHERE N. PKEY = T.CKEY
AND N. PKEY <> N. KEYY

)
Figure 619, Trigger to run after update of PKEY in hierarchy table (part 1 of 2)

Recursive SQL

231

Graeme Birchall ©

, TEMP2(PKEY, CKEY, LVL) AS
(SELECT CKEY

, CKEY
, 0
FROM TEMP1
UNI ON ALL
SELECT N. PKEY
, T. CKEY
, T.LVL +1
FROM TEMP2 T

, H ERARCHY#2 N
WHERE N KEYY = T.PKEY
AND N. KEYY <> N. PKEY

)

SELECT *

FROM TEMPZ;
END

Figure 620, Trigger to run after update of PKEY in hierarchy table (part 2 of 2)

NOTE: The above trigger lacks a statement terminator because it contains atomic SQL,
which means that the semi-colon can not be used. Choose anything you like.

Querying the Exploded Table
Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will aways return the current state of the datain the related hierarchy table.

SELECT *
FROM EXPL ODED#?2
WHERE PKEY = : host-var
ORDER BY PKEY
, CKEY
, LVL;
Figure 621, Querying the exploded table

Below are some suggested indexes:
« PKEY, CKEY (aready defined as part of the primary key).
e CKEY, PKEY (useful when joining to this table).

232 Clean Hierarchies and Efficient Joins

DB2 UDB V8.1 Cookbook ©

Fun with SQL

In this chapter will shall cover some of the fun things that one can and, perhaps, should not
do, using DB2 SQL. Read on at your own risk.

Creating Sample Data

If every application worked exactly as intended from the first, we would never have any need
for test databases. Unfortunately, one often needs to builds test systems in order to both tune
the application SQL, and to do capacity planning. In this section we shall illustrate how very
large volumes of extremely complex test data can be created using relatively simple SQL
Statements.

Good Sample Data is

¢ Reproducible.

¢ Easy to make.

e Similar to Production:

e Same data volumes (if needed).

e Same data distribution characteristics.

Create a Row of Data

Select a single column/row entity, but do not use atable or view as the data source.

WTH TEMPL (COL1) AS ANSVEER
(VALUES 0 ======
) coL1
SELECT *
FROM TEMPL; 0

Figure 622, Select one row/column using VALUES

The above statement uses the VALUES statement to define a single row/column in the tem-
porary table TEMPL. Thistableisthen selected from.

Create "n" Rows & Columns of Data

Select multiple rows and columns, but do not use atable or view as the data source.

WTH TEMP1 (COL1, COL2, COL3) AS ANSVEER
(VALUES (0, "AA, O. 00) ——=—=———=—=—=—=—=—===
2 (1, 'BB', 1.11) COL1 COLz CaLs
(2 'CC. 2.22) oo
) 0 AA 0.00
SELECT * 1 BB 1.11
FROM TEMP1; 2 CC 222

Figure 623, Select multiple rows/columns using VALUES

This statement places three rows and columns of datainto the temporary table TEMP1, which
is then selected from. Note that each row of valuesis surrounded by parenthesis and separated
from the others by a comma.

Fun with SQL 233

Graeme Birchall ©

Linear Data Generation

Create the set of integers between zero and one hundred. In this statement we shall use recur-
sive coding to expand a single value into many more.

W TH TEMP1 (COL1) AS ANSVER
(VALUES 0 ======
UNI ON ALL co.1
SELECT COL1 + 1
FROM TEMP1 0
WHERE COL1 + 1 < 100 1
) 2
SELECT * 3
FROM TEMPL; etc

Figure 624, Use recursion to get list of one hundred numbers

Thefirst part of the above recursive statement refers to a single row that has the value zero.
Note that no table or view is selected from in this part of the query, the row is defined using a
VALUES phrase. In the second part of the statement the original row is recursively added to
itself ninety nine times.

Tabular Data Generation

Create the complete set of integers between zero and one hundred. Display ten numbersin
each line of output.

W TH TEMP1 (CO, C1, C2, C3, ¢4, C5, C6, C7, C8, C9) AS
(VALUES (0 1, 2, 3, 4, 5 6, 7, 8, 9)
UNI ON ALL
SELECT C0+10, Ci1+10, C2+10, C3+10, C4+10

, C5+10, C6+10, Cr7+10, C8+10, C9+10
FROV TEMP1
VWHERE C0+10 < 100

)
SELECT *
FROM TEMPL;

Figure 625, Recursive QL used to make an array of numbers (1 of 2)

The result follows, it is of no functional use, but it looks cute;

0 C1 Cc2 a3 c4 c5 C6 (o7 C8 c9

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Figure 626, Answer - array of numbers made using recursive SQL

Another way to get exactly the same answer is shown below. If differs from the prior SQL in
that most of the arithmetic is deferred until the final select. Both statements do the job equally
well, which one you prefer is mostly a matter of aesthetics.

234 Creating Sample Data

DB2 UDB V8.1 Cookbook ©

W TH TEMPL (Q0) AS
(0)

(VALUES
UNION ALL
SELECT 0
FROM

+10

TEMP1

VWHERE CO0+10 < 100

)
SELECT Q0

,C0+1 AS C1, CQ0+2 AS C2, CQ0+3 AS C3, CO+4 AS 4, CQ0+5 AS C5

, 0+6 AS C6, CO+7 AS C7, CO0+8 AS C8, C0+9 AS 9

FROM

TEMPL,;

Figure 627, Recursive QL used to make an array of numbers (2 of 2)

Cosine vs. Degree - Table of Values

Create areport that shows the cosine of every angle between zero and ninety degrees (accu-
rate to one tenth of adegree).

W TH TEMP1 (DEGREE) AS
(VALUES SMALLI NT(0)

UNI ON ALL

SELECT SMALLI NT(DEGREE + 1)
TEMP1

FROM

VWHERE DEGREE < 89

)
SELECT DEGREE

, DEC(COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE
, DEC({ COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE
, DEC({ COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE
, DEC({ COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE
, DEC(COS(RADI ANS(DEGREE

FROM

TEMPL;
Figure 628, QL to make Cosine vs. Degree table

The answer (part of) follows:
DEGREE PO NTO PO NT1 PO NT2 PO NT3 PO NT4 PO NT5 PO NT6 PO NT7 etc....

ONOUIAWNRO
Coooooork

88 0
89 0

. 052

034

0.
0.

COLoooo00o

050
033

0.

0

CO0O0O00000

048
031

++++ A+t

L0000 00

OCO~NOUIAWNRFO
PN D NS NS NN NN N

COoLoooo0o

0.
0.

Figure 629, Cosi nevs. Degree éQL output

Make Reproducible Random Data

047
029

e e e e e e e e e

oo

CO0O0O00000

APAAADIIADIIDD
G W W WWWWWWWw

N

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

COoLoooo00o

©o

PO NTO
PO NT1
PO NT2
PO NT3
PO NT4
PO NT5
PO NT6
PO NT7
PO NT8
PO NT9

©
©
o
CO0O0O00000

o
N
(]
oo

©o

COoLoooo00o

So far, all we have doneis create different sets of fixed data. These are usually not suitable
for testing purposes because they are too consistent. To mess things up a bit we need to use
the RAND function which generates random numbers in the range of zero to one inclusive. In
the next example we will get a (reproducible) list of five random numeric values:

Fun with SQL

235

Graeme Birchall ©

W TH TEMPL (S1, R1) AS ANSVEER
(VALUES (0, RAND(1)) St
UNION ALL SEQ¥ RANL
SELECT Sl1+1, RAND) I
FROM TEMP1 0 0.001
WHERE S1+1 < 5 1 0.563
) 2 0.193
SELECT SMALLI NT(S1) AS SEQ# 3 0.808
, DECI MAL(R1, 5, 3) AS RANL 4 0.585

FROM TEMP1;
Figure 630, Use RAND to create pseudo-random numbers

Theinitial invocation of the RAND function above is seeded with the value 1. Subsequent
invocations of the same function (in the recursive part of the statement) use the initial valueto
generate areproducible set of pseudo-random numbers.

Using the GENERATE_UNIQUE function

With ahit of data manipulation, the GENERATE_UNIQUE function can be used (instead of
the RAND function) to make suitably random test data. The are advantages and disadvantages
to using both functions:

* The GENERATE_UNIQUE function makes data that is always unique. The RAND func-
tion only outputs one of 32,000 distinct values.

¢ The RAND function can make reproducible random data, while the GENER-
ATE_UNIQUE function can not.

See the description of the GENERATE_UNIQUE function (see page 89) for an example of
how to use it to make random data.

Make Random Data - Different Ranges

There are several ways to mess around with the output from the RAND function: We can use
simple arithmetic to alter the range of numbers generated (e.g. convert from0to 10to O to
10,000). We can dter the format (e.g. from FLOAT to DECIMAL). Lastly, we can make
fewer, or more, distinct random values (e.g. from 32K distinct values down to just 10). All of
thisis done below:

WTH TEMP1 (S1, R1) AS ANSVER
(VALUES (0, RAND(2)) ——===—====—==—=—=======—=====
UNI ON ALL SEQ¥ RAN2 RANL RANS

SELECT S1+1, RAND() T T

FROM TEMP1 0 13 0.0013 0
WHERE S1+1 < 5 1 8916 0.8916 8
) 2 7384 0.7384 7
SELECT SMALLI NT(S1) AS SEQH 3 5430 0.5430 5
, SVALLI NT(R1*10000) AS RAN2 4 8998 0.8998 8

, DECI MAL(R1, 6, 4) AS RANL
, SMALLI NT(R1*10) AS RAN3
FROM TEMPL;

Figure 631, Make differing ranges of random numbers

Make Random Data - Different Flavours

The RAND function generates random numbers. To get random character data one has to
convert the RAND output into a character. There are several ways to do this. The first method
shown below uses the CHR function to convert a number in the range: 65 to 90 into the AS-
Cll equivaent: "A" to "Z". The second method uses the CHAR function to translate a number
into the character equivalent.

236 Creating Sample Data

DB2 UDB V8.1 Cookbook ©

W TH TEMP1 (S1, R1) AS ANSVER
UNI ON ALL SEQ¢ RAN2 RAN3 RAN4
SELECT S1+1, RAND() eali el e e
FROM TEMPL 0 65A 65
WHERE S1+1 < 5 1 88 X 88
) 2 84T 84
SELECT SMALLI NT(S1) AS SEQ# 3 790 79

, SVALLI NT(R1*26+65) AS RAN2 4 88 X 88

, CHR(SMALLI NT(R1*26+65)) AS RAN3
, CHAR(SMALLI NT(RL*26) +65) AS RAN4
FROM TEMPL;
Figure 632, Converting RAND output from number to character

Make Random Data - Varying Distribution

In the real world, there is atendency for certain data values to show up much more frequently
than others. Likewise, separate fields in atable usually have independent semi-random data
distribution patterns. In the next statement we create four independently random fields. The
first has the usual 32K distinct values evenly distributed in the range of zero to one. The sec-
ond is the same, except that it has many more distinct values (approximately 32K squared).
The third and fourth have random numbers that are skewed towards the low end of the range
with average values of 0.25 and 0.125 respectively.

WTH TEMP1 (S1,R1, R2, R3, R4) AS ANSVEER

(VALUES (O S =—=====
, RAND(2) S# RANL RAN2 RAN3 RAN4
VRAND() +(RAND()/ 1E5) mm e e e oo
. RAND() * RAND() 0 1373 169599 182618 215387
, RAND() * RAND()* RAND()) 1 326700 445273 539604 357592

UNI ON ALL 2 909848 981267 7140 81553

SELECT S1 + 1 3 454573 577320 309318 166436
, RAND() 4 875942 257823 207873 9628

, RAND() +(RAND() / 1E5)

, RAND() * RANI)

, RAND() * RAND() * RAND()
FROV TEMP1
WHERE S1 + 1 < 5

)
SELECT SMALLI NT(S1) AS S#
, | NTEGER(R1*1E6) AS RAN1, | NTEGER(R2*1E6) AS RAN2
, | NTEGER(R3* 1E6) AS RAN3, | NTEGER(R4*1E6) AS RAN4
FROM TEMP1;
Figure 633, Create RAND data with different distributions
Make Test Table & Data

So far, al we have done in this chapter is use SQL to select sets of rows. Now we shall create
aProduction-like table for performance testing purposes. We will then insert 10,000 rows of
suitably lifelike test datainto the table. The DDL, with constraints and index definitions, fol-
lows. The important things to note are:

¢ The EMP# and the SOCSEC# must both be unique.

e TheJOB_FTN, FST_NAME, and LST_NAME fields must al be non-blank.
e The SOCSEC# must have a special format.

e« TheDATE_BN must be greater than 1900.

Several other fields must be within certain numeric ranges.

Fun with SQL 237

CREATE TABLE PERSONNEL

(EMP# I NTEGER NOT NULL
, SOCSEC# CHAR(11) NOT NULL
,JOB_FTN CHAR(4) NOT NULL
, DEPT SMALLI NT NOT NULL
, SALARY DECI MAL(7, 2) NOT NULL

, DATE_BN DATE

NOT' NULL W TH DEFAULT

,FST_NAME VARCHAR(20)
,LST_NAVME VARCHAR(20)

, CONSTRAI NT PEX1
, CONSTRAI NT PEO1
, CONSTRAI NT PEO2
, CONSTRAI NT PEO3
, CONSTRAI NT PEO4
, CONSTRAI NT PEOS
, CONSTRAI NT PEO6
, CONSTRAI NT PEQO7
, CONSTRAI NT PEO8
, CONSTRAI NT PEO9
, CONSTRAI NT PE10
COW T,

PRI MARY KEY (EMP#)

CHECK (EMP# > 0)
CHECK (LOCATE(’ ', SOCSECH) = 0)
CHECK (LOCATE(’ -, SOCSECH, 1) = 4)

CHECK (LOCATE(’ -’ , SOCSECH, 5)
CHECK (JOB_FTN <> "’
CHECK (DEPT BETVWEEN 1 AND 99)
CHECK (SALARY BETWEEN O AND 99999)

\%

CHECK (FST_NAME <)
CHECK (LST_NAME <> 1)
CHECK (DATE BN >= ’'1900-01-01'))

CREATE UNI QUE | NDEX PEX2 ON PERSONNEL (SOCSECH);
CREATE UNI QUE | NDEX PEX3 ON PERSONNEL (DEPT, EMP#);

COW T,

Figure 634, Production-like test table DDL

Now we shall populate the table. The SQL shall be described in detail latter. For the moment,
note the four RAND fields. These contain, independently generated, random numbers which
are used to populate the other data fields.

I NSERT | NTO PERSONNEL
WTH TEMP1 (S1,R1, R2, R3, R4) AS

(VALUES (0
, RANI(2)

" RAND() +(RAND() / 1E5)

» RAND() *

. RAND() *
UNI ON ALL
SELECT S1 + 1

» RAND()

RAND()
RAND() * RAND())

" RAND() +(RAND() / 1E5)

» RAND() *
» RAND() *
FROM TEMP1

RAND()
RAND() * RAND()

WHERE S1 < 10000

)
SELECT 100000 + S1

, SUBSTR(DI G TS(| NT(R2*988+10)), 8) || |
SUBSTR(DI Gl TS(| NT(RL*88+10)), 9) || |
TRANSLATE(SUBSTR(DI Gl TS(S1), 7).’ 987345012

, CASE

I
I
6.’

WHEN | NT(R4*9) > 7 THEN ' MGR
WHEN | NT(R4*9) > 5 THEN ' SUPR
VHEN | NT(R4*9) > 3 THEN ' PGWR
WHEN | NT(R4*9) > 1 THEN ' SEC
ELSE ' WKR

END
, I NT(R3*98+1)

, DECI MAL(R4* 99999, 7, 2)
, DATE(’ 1930- 01-01’) + I NT(50- (R4*50)) YEARS

+ I NT(R4*11) MONTHS
+ I NT(R4*27) DAYS

Figure 635, Production-like test table INSERT (part 1 of 2)

238

)

Graeme Birchall ©

0123456789)

Creating Sample Data

DB2 UDB V8.1 Cookbook ©

, CHR(1 NT(R1* 26+65)) | | CHR(|
CHR(| NT(R4*26+97))| | CHR(I
, CHR(| NT(R2* 26+65)) | |
TRANSLATE(CHAR(| NT(R2* 1E7)), * aaeei i bnty’ ,’ 0123456789’)
FROM TEMPL;

Figure 636, Production-like test table INSERT (part 2 of 2)

Some sample data follows:

(R2*26+97)) || CHR(I NT(R3*26+97))] |
(R3*10+97)) || CHR(I NT(R3*11+97))

25

EMP# SOCSECH JOB_ DEPT SALARY DATE_BN F_NVE L_NVE

100000 484-10-9999 VKR 47 13.63 01/01/1979 Ammaef M nyt mbi
100001 449-38-9998 SEC 53 35758.87 04/10/1962 |l ojff Liiienea
100002 979-90-9997 VKR 1 8155. 23 01/ 03/ 1975 Xzacaa Zyt aebma

100003 580-50-9993 WKR 31 16643.50 02/05/1971 Lpiedd Pi meeat
100004 264-87-9994 WKR 21 962.87 01/01/1979 Wf acc Gei nt eei
100005 661-84-9995 WKR 19 4648.38 01/02/ 1977 W ebbc Rbi ybeet

100006 554-53-9990 VKR 8 375.42 01/01/ 1979 Mobaaa Giaiaia
100007 482-23-9991 SEC 36 23170.09 03/07/1968 Enjgdd M nt manb
100008 536-41-9992 VKR 6 10514.11 02/03/1974 Jnbcaa Ni eebayt

Figure 637, Production-like test table, Sample Output

In order to illustrate some of the tricks that one can use when creating such data, each field
above was calculated using a different schema:

¢ The EMP#isasimple ascending number.

e The SOCSECH field presented three problems: It had to be unique, it had to be random
with respect to the current employee number, and it is a character field with specia lay-

out constraints (see the DDL on page 238).

« Tomakeit random, the first five digits were defined using two of the temporary rando

m

number fields. To try and ensure that it was unique, the last four digits contain part of the

employee number with some digit-flipping done to hide things. Also, the first random

number used is the one with lots of unique values. The specia formatting that thisfield

required is addressed by making everything in pieces and then concatenating.

¢ TheJOB FUNCTION is determined using the fourth (highly skewed) random number.

This ensures that we get many more workers than managers.

e TheDEPT isderived from another, somewhat skewed, random number with a range of

values from one to ninety nine.

e The SALARY isderived using the same, highly skewed, random number that was used
for the job function calculation. This ensures that theses two fields have related values.

« TheBIRTH DATE is arandom date value somewhere between 1930 and 1981.

¢ TheFIRST NAME is derived using seven independent invocation of the CHR function,

each of which is going to give a somewhat different result.
* TheLAST NAME is (mostly) made by using the TRANSLATE function to convert a

large random number into a corresponding character value. The output is skewed towards

some of the vowels and the lower-range characters during the trandation.

Fun with SQL

239

Graeme Birchall ©

Time-Series Processing

The following table holds data for atypical time-series application. Observeisthat each row
has both a beginning and ending date, and that there are three cases where there is agap be-
tween the end-date of one row and the begin-date of the next (with the same key).

CREATE TABLE TI ME_SERI ES

(KYY CHAR(03) NOT NULL
,BGN_ DT DATE NOT NULL
,END DT DATE NOT NULL

, CONSTRAI NT TSX1 PRI MARY KEY(KYY, BGN_DT)

, CONSTRAI NT TSC1 CHECK (KYY <> ')

, CONSTRAI NT TSC2 CHECK (BGN_DT <= END DT));
COWM T;

I NSERT | NTO TI ME_SERI ES VALUES

(" AAA" |’ 1995-10-01", ' 1995-10-04"),
" AAA' |’ 1995-10- 06’ ,’ 1995- 10- 06’),
"AAA’ | ' 1995-10-07, ' 1995-10-07"),
" AAA' |’ 1995-10- 15", 1995-10-19'),
"BBB', ' 1995-10-01",’ 1995-10-01"),
'BBB',’ 1995-10-03',’ 1995-10-03');
Figure 638, Sample Table DDL - Time Series

(
(
(
(
(

Find Overlapping Rows

We want to find any cases where the begin-to-end date range of one row overlaps another
with the same key value. In our test database, this query will return no rows.

The following diagram illustrates what we are trying to find. The row at the top (shown asa
bold line) is overlapped by each of the four lower rows, but the nature of the overlap differsin
each case.

} time }

< ROW >
ROW
<4——p ROW
) oW 4——p ¢ ROW) >

Figure 639, Overlapping Time-Series rows - Definition

WARNING: When writing SQL to check overlapping data ranges, make sure that all pos-
sible types of overlap (see diagram above) are tested. Some simpler SQL statements
work with some flavours of overlap, but not others.

The relevant SQL follows. When reading it, think of the A" table as being the double line
above and "B" table as being the four overlapping rows shown as single lines.

SELECT KYY ANSVER
, BG\]_DT —========
, END DT <no rows>

FROM Tl ME_SERI ES A
WHERE EXI STS

(SELECT *
FROM TIME_SER ES B
WHERE A. KYY = B. KYY

AND A BGN DT <> B. BGN DT
AND (A. BGN_DT BETWEEN B. BGN_DT AND B. END_DT
OR B.BGN_ DT BETWEEN A. BGN_ DT AND A END DT))
ORDER BY 1, 2;

Figure 640, Find overlapping rows in time-series

240 Time-Series Processing

DB2 UDB V8.1 Cookbook ©

Thefirst predicate in the above sub-query joins the rows together by matching key value. The
second predicate makes sure that one row does not match against itself. The final two predi-
cates look for overlapping date ranges.

The above query relies on the sample table data being valid (as defined by the CHECK con-
straints in the DDL on page 240. This means that the END_DT is always greater than or equal
tothe BGN_DT, and each KYY, BGN_DT combination is unique.

Find Gaps in Time-Series

We want to find all those cases in the TIME_SERIES table when the ending of one row is not
exactly one day less than the beginning of the next (if thereis anext). The following query
will answer this question. It consists of both ajoin and a sub-query. In the join (which is done
first), we match each row with every other row that has the same key and aBGN_DT that is
more than one day greater than the current END_DT. Next, the sub-query excludes from the
result those join-rows where there is an intermediate third row.

SELECT A. KYY TI ME_SERI ES
, A. BGN_DT o +
, A. END_DT | KYY] BG_DT | END_DT |
, B. BGN_DT [---]---------- [---=------ |
, B. END_DT | AAA| 1995- 10- 01| 1995- 10- 04|
, DAYS(B. BGN_DT) - | AAA| 1995- 10- 06| 1995- 10- 06|
DAYS(A. END_DT) | AAA| 1995- 10- 07| 1995- 10- 07|
AS DI FF | AAA| 1995- 10- 15| 1995- 10- 19|
FROM TIME_SERIES A | BBB| 1995- 10- 01| 1995- 10- 01|
, TIME_SERI ES B | BBB| 1995- 10- 03| 1995- 10- 03|
WHERE A. KYY = B. KYY e e +
AND A END DT < B.BGN DT - 1 DAY
AND NOT EXI STS
(SELECT *
FROM TIME_SERIES Z
WHERE Z. KYY = A KYY
AND Z. KYY = B. KYY
AND Z.BGN DT > A BGN DT
AND Z.BGN DT < B. BGN_DT)
ORDER BY 1, 2;
Figure 641, Find gap in Time-Series, SQL
KEYCOL BGN DT END_DT BGN_DT END_DT D FF
AAA 10/ 01/1995 10/04/1995 10/06/1995 10/06/1995 2
AAA 10/07/ 1995 10/07/1995 10/15/1995 10/19/1995 8
BBB 10/ 01/1995 10/01/1995 10/03/1995 10/03/1995 2

Figure 642, Find gap in Time-Series, Answer

WARNING: If there are many rows per key value, the above SQL will be very inefficient.
This is because the join (done first) does a form of Cartesian Product (by key value) mak-
ing an internal result table that can be very large. The sub-query then cuts this temporary
table down to size by removing results-rows that have other intermediate rows.

Instead of looking at those rows that encompass a gap in the data, we may want to look at the
actual gap itsalf. To thisend, the following SQL differs from the prior in that the SELECT list
has been modified to get the start, end, and duration, of each gap.

Fun with SQL 241

SELECT A. KYY
A END DT + 1 DAY
AS BGN _GAP
,B.BGN DT - 1 DAY
AS END GAP
, (DAYS(B. BG_DT) -
DAYS(A END DT) - 1)
AS GAP_SI ZE
FROM TIME_SERTES A

Graeme Birchall ©

TI ME_SERI ES

I
| AAA| 1995- 10- 01| 1995- 10- 04
| AAA] 1995- 10- 06 1995- 10- 06|
| AAA| 1995- 10- 07| 1995- 10- 07|
| AAA] 1995- 10- 15| 1995- 10- 19|
| BBB| 1995- 10- 01| 1995- 10- 01

, TI ME_SERI ES B | BBB| 1995- 10- 03| 1995- 10- 03]
WHERE A KYY = B.KYY b e +
AND A END DT < B.BGN DT - 1 DAY
AND NOT EXI STS
(SELECT *
FROM TI ME_SERIES Z

VWHERE Z. KYY = A KYY

AND Z. KYY = B. KYY

AND Z.BGN DT > A BGN DT

AND Z. BGN_ DT < B. BGN_DT)
ORDER BY 1, 2;

Figure 643, Find gap in Time-Series, SQL

KEYCOL BGN_GAP END_GAP GAP_SI ZE
AAA 10/ 05/ 1995 10/ 05/1995 1
AAA 10/ 08/ 1995 10/14/ 1995 7
BBB 10/ 02/ 1995 10/02/1995 1

Figure 644, Find gap in Time-Series, Answer

Show Each Day in Gap

Imagine that we wanted to see each individual day in agap. The following statement does this
by taking the result obtained above and passing it into arecursive SQL statement which then
generates additional rows - one for each day in the gap after the first.

W TH TEMP TI ME_SERI ES
(KYY, GAP_DT, GSIZE) AS b e +
(SELECT A KYY | KYY| BGN.DT |END DT |

A END DT + 1 DAY P P |

. (DAYS(B. BGN_DT) - | AAA| 1995- 10- 01 1995- 10- 04]
DAYS(A. END DT) - 1) | AAA] 1995- 10- 06 1995- 10- 06|

FROM TIME_SERI ES A | AAA| 1995- 10- 07| 1995- 10- 07|
, TI ME_SERI ES B | AAA] 1995- 10- 15| 1995- 10- 19|

VWHERE A KYY = B.KYY | BBB| 1995- 10- 01| 1995- 10- 01]
AND A END DT < B.BGN DT - 1 DAY | BBB| 1995- 10- 03| 1995- 10- 03]

AND NOT EXI STS e +
(SELECT *
FROM TIME_SERIES Z
WHERE Z. KYY = A KYY
AND Z. KYY = B. KYY ANSVEER
AND Z. BG\]_DT > A BG\] —=—==—===—=—=—=—=—=—=—=—=—========
AND Z.BGN DT < B. BGN_ DT) KEYCOL GAP_DT GSl ZE
UNTON ALL e e e
SELECT KYY AAA 10/ 05/ 1995 1
, GAP_DT + 1 DAY AAA 10/ 08/ 1995 7
,GSIZE - 1 AAA 10/ 09/ 1995 6
FROM TEMP AAA 10/ 10/ 1995 5
WHERE GSIZE > 1 AAA 10/ 11/ 1995 4
) AAA 10/ 12/ 1995 3
SELECT * AAA 10/ 13/ 1995 2
FROM TEMP AAA 10/ 14/ 1995 1
ORDER BY 1, 2; BBB 10/ 02/ 1995 1

Figure 645, Show each day in Time-Series gap

242 Time-Series Processing

DB2 UDB V8.1 Cookbook ©

Other Fun Things

Convert Character to Numeric

The DOUBLE, DECIMAL, INTEGER, SMALLINT, and BIGINT functions call all be used
to convert a character field into its numeric equivalent:

WTH TEMP1 (Cl) AS ANSWER (nunbers short ened)
(VALUES 123 ', 345 77 567’) ———=—=—=————————=——=———-=—-————=—=—=—=====
SELECT C1 C1 DBL DEC SM. INT
, DOUBLE(C1) AS DBL mmemmmeeioll o TIOLLL
, DECI MAL(C1, 3) AS DEC 123 +1. 2300E+2 123. 123 123
, SMALLI NT(C1) AS SML 345 +3. 4500E+2 345. 345 345
, | NTEGER(C1) AS | NT 567 +5.6700E+2 567. 567 567
FROM TEMPL,

Figure 646, Covert Character to Numeric - SQL

Not al numeric functions support all character representations of a number. The following
tableillustrates what's allowed and what’s not:

I NPUT STRI NG COVPATI BLE FUNCTI ONS

1234" DOUBLE, DECI MAL, | NTEGER, SMALLINT, BI G NT
" 12. 4" DOUBLE, DECI MAL
12E4" DOUBLE

Figure 647, Acceptable conversion values
Checking the Input

A CASE statement can be used to check that the input string is a valid representation of a
number before doing the data conversion. In the next example we are converting to smallint,
so the input has be avalid character representation of an integer value.

W TH TEMPL (Cl) AS (VALUES ® 123',°456 ’,’ 1 2',’ 33%, NULL)
SELECT Cl
, CHAR(RTRI MLTRI M(C1)) , 4)
, CHAR(TRANSLATE(RTRIM LTRIM C1)),’ $',’ 0123456789'), 4)
, CASE
WHEN TRANSLATE(RTRIMLTRIMC1)),’ $',’ 0123456789') = '’
THEN SMALLI NT(C1)
ELSE SMALLI NT(0)
END
FROM TEMPL;

Figure 648, Covert Character to Numeric (check input), SQL

The answer follows. The left-most field isthe original input, the right-most is the desired out-
put. The two in the middleillustrate what is being done.

Cl 2 3 4
123 123 123
456 456 456
12 12 $ 0
33% 33% % 0

- - - 0
Figure 649, Covert Character to Numeric (check input), Answer

The objective of the above CASE statement isto see if there are any charactersin the input
field other than digits. To do this, first all leading and trailing blanks are removed. Then em-
bedded blanks are converted to dollar signs and all digits are converted to blank. If the result
isablank value then we must have a simple integer value as input.

Fun with SQL 243

Graeme Birchall ©

Converting character to decimal isillustrated below. It is much the same as above, except that
now one must also accept as valid input a number with an embedded dot - but not asingle dot
by itself, nor multiple dots:

WTH TEMPL (C1) AS (VALUES ’.123',°4.6.’,' 1.2',’ 33.', NULL)
SELECT Cl1
, CHAR(RTRI MLTRI M C1)) , 4)
, CHAR(TRANSLATE(RTRIM LTRIM C1)),’ $',’ 0123456789'), 4)
, CASE
WHEN LTRI M TRANSLATE(RTRI MLTRIMC1)),’ $',’ 0123456789’))
=’ THEN DECI MAL(CL, 7, 3)
WHEN LTRI M TRANSLATE(RTRI MLTRIM C1)),’ $',’ 0123456789’))

='." AND LTRIMC1) <> .’ THEN DECI MAL(C1, 7, 3)
ELSE DECIMAL(0, 7,3)
END
FROM TEMP1;
Figure 650, Covert Character to Decimal (check input), SQL
Cl 2 3 4
.123 .123 . 0.123
4. 6. 4. 6. .o 0. 000
1.2 1.2 . 1. 200
33. 33. . 33. 000
- 0. 000

Figure 651, Covert Character to Decimal (check input), Answer

Convert Timestamp to Numeric

There is absolutely no sane reason why anyone would want to convert a date, time, or time-
stamp value directly to a number. The only correct way to manipulate such dataisto use the
provided date/time functions. But having said that, here is how one doesit:

W TH TABL(TS1) AS
(VALUES CAST(’ 1998- 11- 22- 03. 44. 55. 123456’ AS TI MESTAWP))

SELECT TS1 => 1998- 11- 22- 03. 44. 55. 123456
, HEX(TS1) => 19981122034455123456
, DEC(HEX(TS1) , 20) => 19981122034455123456.
, FLOAT(DEC(HEX(TS1) , 20)) => 1.99811220344551e+019
, REAL (DEC({ HEX(TS1), 20)) => 1.998112e+019

FROM TABL;
Figure 652, Covert Timestamp to number

Selective Column Output

Thereisno way in static SQL to vary the number of columns returned by a select statement.
In order to change the number of columns you have to write anew SQL statement and then
rebind. But one can use CA SE logic to control whether or not a column returns any data.

Imagine that you are forced to use static SQL. Furthermore, imagine that you do not aways
want to retrieve the data from all columns, and that you also do not want to transmit data over
the network that you do not need. For character columns, we can address this problem by re-
trieving the data only if it is wanted, and otherwise returning to a zero-length string. To illus-
trate, hereisan ordinary SQL statement:

244 Other Fun Things

DB2 UDB V8.1 Cookbook ©

SELECT EMPNO
, FI RSTNVE
, LASTNAMVE
,JOB
FROM EMPLOYEE
WHERE EMPNO < ' 000100’
CRDER BY EMPNG,

Figure 653, Sample query with no column control

Here is the same SQL statement with each character column being checked against a host-
variable. If the host-variable is 1, the datais returned, otherwise a zero-length string:

SELECT EMPNO
, CASE : host-var-1
VWHEN 1 THEN FlI RSTNVE
ELSE Y
END AS Fl RSTNME
, CASE : host-var-2
VWHEN 1 THEN LASTNAME
ELSE Y
END AS LASTNAME
, CASE : host-var-3
WHEN 1 THEN VARCHAR(JOB)
ELSE Y
END AS JOB
FROM EMPLOYEE
VWHERE EMPNO < ’ 000100’
ORDER BY ENMPNO

Figure 654, Sample query with column control

Making Charts Using SQL

Imagine that one had a string of humbers that one wanted to display as aline-bar char. With a
little coding, thisis easy to do in SQL:

W TH TEMPL (COL1) AS (VALUES 12, 22, 33, 16, 0, 44, 15, 15)
SELECT COL1

, SUBSTR(TRANSLATE(CHAR(® ’,50),’*’,’ '), 1, COL1)

AS PRETTY_CHART
FROM TEMPL;

Figure 655, Make chart using SQL
COL1 PRETTY_CHART

12 kkkkkkhkkkhkkkx

22 khkkhkkkhkkkkhkkhkhkhkkdkhkkhkkkhkkkx

33 Rk R I b S R R R o R R o

16 kkkhkkkhkkkkhkkhkkkhkk*k

42 EE R I S I S O S S
15 Rk R I b I R

15 kkkhkkkkhkkkhkkhkkhkkkx

Figure 656, Make charts using SQL, Answer

To create the above graph we first defined a fifty-byte character field. The TRANSLATE
function was then used to convert al blanksin thisfield to asterisks. Lastly, the field was cut
down to size using the SUBSTR function.

A CASE statement should be used in those situations where oneis not sure what will be high-
est value returned from the value being charted. This is needed because DB2 will return a
SQL error if aSUBSTR truncation-end value is greater than the related column length.

Fun with SQL 245

Graeme Birchall ©

W TH TEMPL (COL1) AS (VALUES 12, 22, 33, 16, 0, 66, 15, 15)
SELECT COL1
, CASE
WHEN COL1 < 48
THEN SUBSTR(TRANSLATE(CHAR(’ ',50),’*’,’ '), 1, COL1)
ELSE TRANSLATE(CHAR(’ ',47),’* .’ ')|| >>>
END AS PRETTY_CHART
FROM TEMPL;

Figure 657, Make charts using SQL
COL1 PRETTY_CHART

12 kkkhkkkkkkhkkkkx

22 ER kR I kSRR o

33 khkkhkkhkkhkhkkhkkhkhhkhkhkhkkhhkdrhkdrkhrxdrhkdxhx*xx

16 Rk R S b O R

6(6) ***>>>
15 kkkhkkkkhkkkhkkhkkhkkkx

15 Rk R I b R O R

Figure 658, Make charts using QL, Answer

If the above SQL statement looks a bit intimidating, refer to the description of the SUBSTR
function given on page 111 for asimpler illustration of the same general process.

Multiple Counts in One Pass

The STATS table that is defined on page 116 has a SEX field with just two values, 'F (for
female) and 'M’ (for male). To get a count of the rows by sex we can write the following:

SELECT SEX ANSVER >> SEX NUM

,COUNT(*) AS NUM e s
FROM STATS F 595
GROUP BY SEX M 405

ORDER BY SEX;
Figure 659, Use GROUP BY to get counts

Imagine now that we wanted to get a count of the different sexes on the same line of outpuit.
One, not very efficient, way to get this answer is shown below. It involves scanning the data
table twice (once for males, and once for females) then joining the result.
WTH F (F) AS (SELECT COUNT(*) FROM STATS WHERE SEX = 'F')
,M (M AS (SELECT COUNT(*) FROM STATS WHERE SEX = 'M)

SELECT F, M
FROM F, M

Figure 660, Use Common Table Expression to get counts

It would be more efficient if we answered the question with a single scan of the data table.
This we can do using a CA SE statement and a SUM function:
SELECT SUM CASE SEX WHEN ' F* THEN 1 ELSE 0 END) AS FEMALE

, SUM CASE SEX WHEN "M THEN 1 ELSE O END) AS MALE
FROM STATS;

Figure 661, Use CASE and SUM to get counts

We can now go one step further and also count something else as we pass down the data. In
the following example we get the count of al the rows at the same time as we get the individ-
ual sex counts.
SELECT COUNT(*) AS TOTAL
, SUM CASE SEX WHEN ' F' THEN 1 ELSE 0 END) AS FEMALE

, SUM CASE SEX WHEN "M THEN 1 ELSE O END) AS MALE
FROM STATS;

Figure 662, Use CASE and SUM to get counts

246 Other Fun Things

DB2 UDB V8.1 Cookbook ©

Multiple Counts from the Same Row

Imagine that we want to select from the EMPLOY EE table the following counts presented in

atabular list with one line per item. In each case, if nothing matches we want to get a zero:

» Thosewith asalary greater than $20,000
e Those whose first name begins ' ABC%’
¢ Thosewho are male.

e Employees per department.

* A count of all rows.

Note that a given row in the EMPLOY EE table may match more than one of the above crite-
ria. If thiswere not the case, a simple nested table expression could be used. Instead we will

do the following:

W TH CATEGORY (CAT, SUBCAT, DEPT) AS
(VALUES (' 1ST',” ROAS I N TABLE ', ")
, ("2ND , " SALARY > $20K ’," ")
,("3RD , " NAME LIKE ABC%,’ ")
,("4TH , " NUMBER MALES ',"")
UNI ON
SELECT ' 5TH , DEPTNAME, DEPTNO
FROM DEPARTMENT

)

SELECT XXX. CAT AS " CATEGORY"
, XXX. SUBCAT AS " SUBCATEGORY/ DEPT"
, SUM XXX. FOUND) AS " #ROWS"

FROM (SELECT CAT. CAT

, CAT. SUBCAT
, CASE
WHEN EMP. EMPNO | S NULL THEN O
ELSE 1

END AS FOUND
FROM CATEGORY CAT

LEFT OQUTER JO N

EMPLOYEE EMP
ON CAT. SUBCAT = "ROANS | N TABLE
R (CAT. SUBCAT = ' NUMBER MALES
AND EMP. SEX ='M)
R (CAT. SUBCAT = " SALARY > $20K
AND EMP. SALARY > 20000)
R (CAT. SUBCAT = " NAME LI KE ABC%
AND EMP. FI RSTNMVE LI KE * ABC%)
OR (CAT. DEPT <>
AND CAT. DEPT = EMP. WORKDEPT)

) AS XXX
GROUP BY XXX. CAT
, XXX. SUBCAT
ORDER BY 1, 2;

Figure 663, Multiple countsin one pass, SQL

In the above query, atemporary table is defined and then populated with all of the summation

types. Thistableisthen joined (using aleft outer join) to the EMPLOY EE table. Any
matches (i.e. where EMPNO is not null) are given a FOUND value of 1. The output of the

joinisthen feed into aGROUP BY to get the required counts.

Fun with SQL

247

Graeme Birchall ©

CATEGORY SUBCATEGCORY/ DEPT #RONS
1ST ROAS | N TABLE 32
2ND SALARY > $20K 25
3RD NAME LI KE ABC% 0
4TH NUMBER MALES 19
5TH ADM NI STRATI ON SYSTEMS 6
5TH DEVELOPMENT CENTER 0
5TH I NFORVATI ON CENTER 3
5TH MANUFACTURI NG SYSTEMS 9
5TH OPERATI ONS 5
5TH PLANNI NG 1
5TH SCOFTWARE SUPPORT 4
5TH SPI FFY COVPUTER SERVI CE DI V. 3
5TH SUPPORT SERVI CES 1

Figure 664, Multiple countsin one pass, Answer

Find Missing Rows in Series / Count all Values

One often has a sequence of values (e.g. invoice numbers) from which one needs both found
and not-found rows. This cannot be done using asimple SELECT statement because some of
rows being selected may not actually exist. For example, the following query lists the number
of staff that have worked for the firm for "n" years, but it misses those years during which no
staff joined:

SELECT YEARS ANSVEER
FROM STAFF YEARS #STAFF
WHERE UCASE(NAME) LIKE'%&% ==mmm ------
AND YEARS <= 5 1 1
GROUP BY YEARS; 4 2
5 3

Figure 665, Count staff joined per year

The simplest way to address this problem is to create a complete set of target values, then do
an outer join to the data table. Thisis what the following example does:

W TH LI ST_YEARS (YEAR#) AS ANSVEER
(VALUES (D), (1), (2).(3).(4),(5) =====z======

) YEARS #STAFF
SELECT YEAR¥ AS YEARS il s
, COALESCE(#STFF, 0) AS #STAFF 0 0

FROM LI ST_YEARS 1 1
LEFT OUTER JON 2 0
(SELECT YEARS 3 0

, COUNT(*) AS #STFF 4 2

FROM STAFF 5 3

VWHERE UCASE(NAME) LI KE ’ 9%&%
AND YEARS <= 5
GROUP BY YEARS

) AS XXX
N YEAR# = YEARS
ORDER BY 1;

Figure 666, Count staff joined per year, all years

The use of the VALUES syntax to create the set of target rows, as shown above, getsto be
tedious if the number of values to be made is large. To address this issue, the following ex-
ample uses recursion to make the set of target values:

248 Other Fun Things

DB2 UDB V8.1 Cookbook ©

W TH LI ST_YEARS (YEAR#) AS ANSVER
(VALUES SMALLI NT(0) ============
UNTON ALL YEARS #STAFF
SELECT YEARHE + 1 aeeee aeaaas
FROM LI ST_YEARS 0 0
VWHERE YEAR# < 5) 1 1
SELECT YEAR# AS YEARS 2 0
, COALESCE(#STFF, 0) AS #STAFF 3 0
FROM LI ST_YEARS 4 2
LEFT QUTER JO N 5 3

(SELECT YEARS
, COUNT(*) AS #STFF
FROM STAFF
WHERE ~ UCASE(NAME) LIKE ’ %E%
AND YEARS <= 5
GROUP BY YEARS

) AS XXX
N YEAR# = YEARS
ORDER BY 1;

Figure 667, Count staff joined per year, all years

If one turns the final outer join into a (negative) sub-query, one can use the same general logic
to list those years when no staff joined:

W TH LI ST_YEARS (YEAR#) AS ANSVEER
(VALUES SMALLINT(0) ======
UNTON ALL YEAR#

SELECT YEARE + 12 eeee

FROM LI ST_YEARS 0
WHERE YEARE < 5) 2
SELECT YEAR# 3
FROM LI ST_YEARS Y
WHERE ~ NOT EXI STS
(SELECT *

FROM STAFF S
VWHERE UCASE(S. NAME) LI KE ' %&%
AND S. YEARS = Y. YEAR#)
CRDER BY 1,

Figure 668, List years when no staff joined

Normalize Denormalized Data

Imagine that one has a string of text that one wants to break up into individual words. Aslong
as the word delimiter isfairly basic (e.g. ablank space), one can use recursive SQL to do this
task. Onerecursively divides the text into two parts (working from left to right). The first part
is the word found, and the second part is the remainder of the text:

Fun with SQL 249

Graeme Birchall ©

W TH
TEMP1 (I D, DATA) AS
(VALUES (01, SOME TEXT TO PARSE. ')
, (02,” MORE SAMPLE TEXT.')

, (03, ONE- WORD. ")
, (04, 1)
).
TEMP2 (1D, WORD#, WORD, DATA LEFT) AS
(SELECT 1D
, SVALLI NT(1)

, SUBSTR(DATA, 1,
CASE LOCATE(’ ', DATA)
WHEN 0 THEN LENGTH(DATA)
ELSE LOCATE(’ ', DATA)
END)
, LTRI M SUBSTR(DATA,
CASE LOCATE(’ ', DATA)
WHEN 0 THEN LENGTH(DATA) + 1
ELSE LOCATE(’ ', DATA)
END))
FROM TEMP1
WHERE DATA <> '’
UNI ON ALL
SELECT 1D
, WORDH + 1
. SUBSTR(DATA LEFT, 1,
CASE LOCATE(’ ', DATA LEFT)
WHEN 0 THEN LENGTH(DATA LEFT)
ELSE LOCATE(’ ', DATA LEFT)
END)
, LTRI M SUBSTR(DATA LEFT,
CASE LOCATE(’ ', DATA LEFT)
WHEN O THEN LENGTH(DATA LEFT) + 1
ELSE LOCATE(’ ', DATA LEFT)
END))
FROM TEMP2
WHERE ~ DATA LEFT <>’

)

SELECT *
FROM TEMP2
CRDER BY 1, 2;

Figure 669, Break text into words - QL

The SUBSTR function is used above to extract both the next word in the string, and the re-
mainder of the text. If there is a blank byte in the string, the SUBSTR stops (or begins, when
getting the remainder) at it. If not, it goesto (or begins at) the end of the string. CASE logic is
used to decide what to do.

ID WORDH# WORD DATA LEFT
1 1 SOVE TEXT TO PARSE.
1 2 TEXT TO PARSE.
1 3 TO PARSE.
1 4 PARSE
2 1 MORE SAMPLE TEXT.
2 2 SAMPLE TEXT.
2 3 TEXT.
3 1 ONE- WORD.

Figure 670, Break text into words - Answer

Denormalize Normalized Data

In the next example, we shall use recursion to string together all of the employee NAME
fieldsin the STAFF table (by department):

250 Other Fun Things

DB2 UDB V8.1 Cookbook ©

W TH TEMP1 (DEPT, W#, NAMVE, ALL_NANES) AS
(SELECT DEPT
, SVALLI NT(1)
. M N(NAVE)
, VARCHAR(M N(NANE) , 50)
FROM STAFF A
GROUP BY DEPT
UNI ON ALL
SELECT A DEPT
, SVALLI NT(B. Wt+1)

. A. NANE
JB.ALL_NAMES || * ’ || A NAME
FROM STAFF A
, TEMPL B
WHERE A DEPT = B. DEPT
AND A NAME > B. NAME

AND A NAMVE
(SELECT M N(C. NANE)
FROM STAFF C
WHERE C. DEPT = B. DEPT
AND C.NAME > B. NAME)

)

SELECT *

FROM TEMP1 D
WHERE Wt =

(SELECT MAX(W¥)

FROM TEMPL E

WHERE D. DEPT = E. DEPT)
ORDER BY DEPT;

Figure 671, Denormalize Normalized Data - SQL

The above statement begins by getting the minimum name in each department. It then recur-
sively getsthe next to lowest name, then the next, and so on. Aswe progress, we store the
current name in the temporary NAME field, maintain a count of names added, and append the
sameto the end of the ALL_NAMES field. Once we have all of the names, the final SELECT
eliminates from the answer-set al rows, except the last for each department.

DEPT W NAME ALL_NAMES
10 4 Mblinare Dani el s Jones Lu Mdlinare
15 4 Rot hman Hanes Kerm sch Ngan Rot hnan
20 4 Snei der Janes Pernal Sanders Sneider
38 5 Quigley Abr ahanms Marenghi Naughton O Brien Quigley
42 4 Yanmaguchi Koonitz Plotz Scoutten Yamaguchi
51 5 WIllians Fraye Lundquist Smith Weeler WIIians
66 5 WIson Bur ke Gonzal es Graham Lea W/ son
84 4 Quill Davi s Edwards Gafney Quill

Figure 672, Denormalize Normalized Data - Answer

Reversing Field Contents

DB2 lacks asimple function for reversing the contents of a data field. Fortunately, there are
severa, somewhat tedious, ways to achieve the required result in SQL.

Input vs. Output

Before we do any datareversing, we have to define what the reversed output should look like
for agiven input value. For example, if we have afour-digit numeric field, the reverse of the

number 123 could be 321, or it could be 3210. The latter value implies that the input has a
leading zero. It also assumes that we really are working with afour digit field.

Fun with SQL 251

Graeme Birchall ©

Trailing blanks in character values are asimilar problem. Obvioudly, the reverse of "ABC" is
"CBA", but what isthe reverse of "ABC "? There is no specific technical answer to any of
these questions. The correct answer depends upon the business needs of the application.

Reversing Integers

The following SQL statement reverses the contents of a four-digit numeric field. Leading ze-
ros are implied when the input is less than four digits long.

W TH TEMPL (N1) AS ANSVEER

(VALUES (-0124), (+0000), (+0001) e
. (+0456) , (+6789), (+9999)) NI 2

SELECT NL T

,(((NL/ 1)-(NL/ 10)*10) *1000) + -124 -4210

(((N1/ 10)-(NL/ 100)*10) * 100) + 0 0

(((NL/ 100)-(N1/ 1000)*10) * 10) + 1 1000

(((N1/1000)- (N1/10000)*10) * 1) 456 6540

FROM TEMPL; 6789 9876

9999 9999

Figure 673, Reverse digits in four-byte integer field - assume leading zeros

The next statement does the job when leading zeros are not assumed. However, it does as-
sume that the input has a maximum of four digits.

W TH TEMPL (N1) AS ANSVEER

(VALUES (-0124), (+0000), (+0001) ===========
, (+0456) , (+6789), (+9999)) NI 2

SELECT NL T

J((((NL/ 1)-(N1/ 10)*10) *1000) + -124 -421

(((NI/ 10)-(NL/ 100)*10) * 100) + 0 0

(((N1/ 100)-(NL/ 1000)*10) * 10) + 1 1

(((N1/1000)- (N1/10000)*10) * 1))/ 456 654

CASE 6789 9876

WHEN ABS(NL) < 10 THEN 1000 9999 9999

VWHEN ABS(N1) < 100 THEN 100
WHEN ABS(N1) < 1000 THEN 10
ELSE 1
END
FROM TEMPL,

Figure 674, Reverse digits in four-byte integer field - assume no leading zeros

Another way to reverse the contents of a numeric field isto first convert the data to character.
Then use the character-reversing logic described below before converting the character data
back to numbers.

Reversing Characters

The next statement reverses the contents of an eight-character field. Trailing blanks are con-
verted into leading blanks in the output.

SELECT JOB ANSVER
, SUBSTR(JOB, 8,1) || SUBSTR(JOB, 7, 1) =================
|| SUBSTR(JOB, 6,1) || SUBSTR(JOB,5, 1) JOB BOJ
[| SUBSTR(JOB, 4,1) || SUBSTR(JOB,3,1) cececmee —mmenons
[| SUBSTR(JOB, 2,1) || SUBSTR(JOB,1, 1) ANALYST TSYLANA
AS BOJ CLERK KRELC
FROM EMPLOYEE DES| GNER RENG SED
GROUP BY JOB: FI ELDREP PERDLEI F

MANAGER REGANAM
OPERATOR ROTAREPO
PRES SERP
SALESREP PERSELAS

Figure 675, Reverse characters - keep trailing blanks

In the following statement, trailing blanks (which become leading blanks) are discarded.

252 Other Fun Things

DB2 UDB V8.1 Cookbook ©

SELECT JOB
, CHAR(LTRI M
SUBSTR(JOB, 8,1) ||
SUBSTR(JOB, 6, 1) | |
SUBSTR(JOB, 4,1) ||
SUBSTR(JOB, 2, 1) | |
), 8) AS BQJ

FROM EMPLOYEE

GROUP BY JOB;

SUBSTR(JOB, 7, 1)
SUBSTR(JOB, 5, 1)
SUBSTR(JOB, 3, 1)
SUBSTR(JOB, 1, 1)

Figure 676, Reverse characters - discard trailing blanks

ANALYST
CLERK
DESI GNER
FI ELDREP
MANAGER
OPERATOR
PRES
SALESREP

TSYLANA
KRELC
RENG SED
PERDLEI F
REGANAM
ROTAREPO
SERP
PERSELAS

The above two statements have to be atered if the field being reversed is either longer or
shorter that what is given. We can use recursion to define a more general-purpose query. In
the following example we will reverse the NAME field in the staff table. The logic goes:

« Begin by putting the last character of the NAME into the NEW_NAME column and the

rest of the NAME into the REST column.

* Recursively, keep concatenating the last character in the REST column to what is already
inthe NEW_NAME column while the leaving the rest of the name in the REST column.

Stop processing when the REST column has no more characters.

e Finadly, select those rows where the REST column is empty.

W TH TEMP (OLD_NAME, NEW NAME, REST) AS
(SELECT NAME

, SUBSTR(NANE, LENGTH(NAVE))

, SUBSTR(NANE, 1, LENGTH(NAME) - 1)

FROV STAFF
WHERE I D < 100
UNNON ALL

SELECT OLD NAMVE
, NEW NAVE CONCAT
SUBSTR(REST, LENGTH(REST))
, SUBSTR(REST, 1, LENGTH(REST) - 1)

FROM TEMP
WHERE ~ LENGTH(REST) > 0
)
SELECT OLD_NAME

, NEW NAMVE
FROM TEMP
WHERE REST = '’

ORDER BY OLD_NAME;
Figure 677, Reverse character field using recursion

Stripping Characters

Janmes

Kooni t z
Mar enghi
O Brien
Per nal

Qui gl ey
Rot hman
Sanders

senaH
semalJ

zti nooK
i hgner aM
neirB O
| anreP
yel gi uQ
namht oR
srednaS

DB2 for 0OS/390 comes with a cute function for stripping characters (blank, or non-blank)
from either or both ends of a character string. Baby DB2 lacks such afunction, so below it
has been emulated below using the native RTRIM and LTRIM functions. Thetrick isto first
change al of the blanks to something else, then the character to be stripped to blank, then trim
either end, then change everything back again. This query generates afriendly error message
if the input string has the character value that will be used to hold the blanks:

Fun with SQL

253

W TH TEMP (TXT) AS
(VALUES (' HAS TRAI LI NG ZEROS 0000’)
,("HAS 0 IN MDDLE 0000’)
. (' HAS TEMP ~ CHAR 0000’))
SELECT TXT
, TRANSLATE(
TRANSLATE(
LTRI M
RTRI M
TRANSLATE(
TRANSLATE(TXT,” ~'," ')
;0N
)

SN
.77, ~") AS TXT_STRI PPED
FROM TEMP
WHERE CASE LOCATE(’ ~', TXT)
VHEN 0 THEN '’

Graeme Birchall ©

ELSE RAI SE_ERROR(' 80001’ ," FOUND ~ YQU I DI OT! ")

END = ",

HAS TRAI LI NG ZERCS 0000 HAS TRAI LI NG ZERCS
HAS 0 IN M DDLE 0000 HAS 0 IN M DDLE
error 80001, "FOUND ~ YQU I Dl Or!"

Figure 678, Sripping non-blank characters

Use the REPLACE function to remove characters from anywhere in a character string. In the

following example, every "e" is removed from the staff name:
SELECT NAME AS OLD_NAME
, REPLACE(NAME, €’ ,’) AS NEW NAME
FROM STAFF
VWHERE D < 50;

Figure 679, Strip characters from text

Query Runs for "n" Seconds

Sander s
Per nal

Mar engh
O Brien

Sandr s
Pr nal

i Marnghi
OBrin

Imagine that one wanted some query to take exactly four secondsto run. The following query
doesjust this - by looping (using recursion) until such time as the current system timestamp is
four seconds greater than the system timestamp obtained at the beginning of the query:

254

Other Fun Things

DB2 UDB V8.1 Cookbook ©

W TH TEMPL (NUM TS1, TS2) AS
(VALUES (1 NT(1)

, TI MESTAVP(GENERATE_UNI QUE())

, TI MESTAVP(GENERATE_UNI QUE()))

UNI ON ALL
SELECT NUM + 1
, TS1

, TI MESTAVP(GENERATE_UNI QUE())
FROM TEMP1
WHERE Tl MESTAVPDI FF(2, CHAR(TS2- TS1)) < 4

)

SELECT MAX(NUM) AS #LOOPS
,MN(TS2) AS BGN_TI MESTAMP
,MAX(TS2) AS END_TI MESTAMP

FROM TEMPL;

58327 2001-08-09-22. 58. 12. 754579 2001- 08- 09-22. 58. 16. 754634

Figure 680, Run query for four seconds

Observe that the CURRENT TIMESTAMP special register is not used above. It is not appro-
priate for this situation, because it always returns the same value for each invocation within a

single query.

Fun with SQL

255

DB2 UDB V8.1 Cookbook ©

Quirks in SQL

One might have noticed by now that not all SQL statements are easy to comprehend. Unfor-
tunately, the situation is perhaps alittle worse than you think. In this section we will discuss
some SQL statements that are correct, but which act just alittle funny.

Trouble with Timestamps

When does one timestamp not equal another with the same value? The answer is, when one
value uses a 24 hour notation to represent midnight and the other does not. To illustrate, the
following two timestamp val ues represent the same point in time, but not according to DB2:

WTH TEMP1 (C1,T1, T2) AS (VALUES ANSVEER
(’ A —========
, TI MESTAMP(’ 1996- 05- 01- 24. 00. 00. 000000’) <no rows>
, TI MESTAMP(’ 1996- 05- 02- 00. 00. 00. 000000’)))

SELECT C1

FROM TEMP1

WHERE T1 = T2;
Figure 681, Timestamp comparison - Incorrect

To make DB2 think that both timestamps are actually equal (which they are), all we haveto
do isfiddle around with them a bit:

W TH TEMPL (CL1, T1,T2) AS (VALUES ANSVEER
(1 Aﬂ _—-—_—=—==—=
, TI MESTAMP(® 1996- 05- 01- 24. 00. 00. 000000’) c1
. TI MESTAVP(* 1996- 05- 02- 00. 00. 00. 000000))) --
SELECT C1 A
FROM TEMPL

WHERE T1 + 0 M CROSECOND = T2 + 0 M CRCSECOND;
Figure 682, Timestamp comparison - Correct

Be aware that, as with everything else in this section, what is shown above is not a bug. It has
always worked thisway, evenin DB2 for OS/390, and probably always will. Code with care.
No Rows Match

How many rows to are returned by a query when no rows match the provided predicates? The
answer isthat sometimes you get none, and sometimes you get one:

SELECT CREATOR ANSVER

FROM SYSI BM SYSTABLES ========

VHERE CREATOR = '’ Z7ZZ'; <no row>
Figure 683, Query with no matching rows (1 of 8)

SELECT MAX(CREATOR) ANSWER

FROM SYSI BM SYSTABLES —=====

VHERE CREATCR = '’ Z7ZZ'; <nul | >
Figure 684, Query with no matching rows (2 of 8)

SELECT MAX(CREATOR) ANSVER

FROM SYSI BM SYSTABLES ========

VHERE CREATOR = ' 7277 <no row>

HAVI NG MAX(CREATOR) 1S NOT NULL;
Figure 685, Query with no matching rows (3 of 8)

Quirks in SQL 257

Graeme Birchall ©

SELECT MAX(CREATOR) ANSVEER
FROM SYSI BM SYSTABLES ========
WHERE CREATOR =727 <no row>

HAVI NG MAX(CREATOR) = ' ZZZ7';
Figure 686, Query with no matching rows (4 of 8)

SELECT MAX(CREATOR) ANSVEER
FROM SYSI BM SYSTABLES ========
WHERE CREATOR = ' 727 <no row>

GROUP BY CREATOR;
Figure 687, Query with no matching rows (5 of 8)

SELECT CREATOR ANSVER
FROM SYSI BM SYSTABLES —=======
VHERE CREATOR = ' ZZZ’ <no row>

GROUP BY CREATOR;
Figure 688, Query with no matching rows (6 of 8)

SELECT COUNT(*) ANSVEER
FROM SYSI BM SYSTABLES ========
WHERE CREATOR = ' 7227 <no row>

GROUP BY CREATOR;
Figure 689, Query with no matching rows (7 of 8)

SELECT COUNT(*) ANSVER
FROM SYSI BM SYSTABLES ======
WHERE CREATOR = ' 7727’ ; 0

Figure 690, Query with no matching rows (8 of 8)
There is a pattern to the above, and it goes thus:

¢ When there is no column function (e.g. MAX, COUNT) in the SELECT then, if there are
no matching rows, no row is returned.

e If thereisacolumn function in the SELECT, but nothing else, then the query will always
return arow - with zero if the function isa COUNT, and null if it is something else.

e If thereisacolumn function in the SELECT, and also aHAVING phrase in the query, a
row will only be returned if the HAVING predicateis true.

e If thereisacolumn function in the SELECT, and a'so aGROUP BY phrase in the query,
arow will only be returned if there was one that matched.

Dumb Date Usage

Imagine that you have some character value that you convert to a DB2 date. The correct way
todoitisgiven below:
SELECT DATE(’ 2001- 09- 22’) ANSVEER
FROM SYSI BM SYSDUMMY1; ——==—=—=====
09/ 22/ 2001
Figure 691, Convert value to DB2 date, right

What happens if you accidentally leave out the quotes in the DATE function? The function
still works, but the result is not correct:
SELECT DATE(2001- 09- 22) ANSWER
FROM SYSI BM SYSDUMWY1; ==========
05/ 24/ 0006
Figure 692, Convert value to DB2 date, wrong

Why the 2,000 year difference in the above results? When the DATE function gets a character
string asinput, it assumes that it is valid character representation of a DB2 date, and converts

258

DB2 UDB V8.1 Cookbook ©

it accordingly. By contrast, when the input is numeric, the function assumes that it represents
the number of days minus one from the start of the current era (i.e. 0001-01-01). In the above
guery the input was 2001-09-22, which equals (2001-9)-22, which equals 1970 days.

RAND in Predicate

The following query was written with intentions of getting a single random row out of the
matching set in the STAFF table. Unfortunately, it returned two rows:

SELECT I D ANSVER
y NANE e o o o — —
FROM STAFF | D NAVE
VWHERE ID <= 100 e e
AND ID = (INT(RAND()* 10) * 10) + 10 30 Mar enghi
CRDER BY | D; 60 Quigley

Figure 693, Get random rows - Incorrect

The above SQL returned more than one row because the RAND function was reevaluated for
each matching row. Thus the RAND predicate was being dynamically altered as rows were
being fetched.

Toillustrate what is going on above, consider the following query. The results of the RAND
function are displayed in the output. Observe that there are multiple rows where the function
output (suitably massaged) matched the ID value. In theory, anywhere between zero and all
rows could match:

W TH TEMP AS ANSVER
(SELECT | D ————=—=—=—=—=—=—=—=—=—==—=—====
, NAVE ID NAME RAN EQL
"(INT(RAND(0)* 10) * 10) + 10 AS RAN =-n coomcoee —on ---
FROM STAFF 10 Sanders 10Y
VHERE ID <= 100 20 Pernal 30
) 30 Marenghi 70
SELECT T.* 40 O Brien 10
,CASE | D 50 Hanes 30
VWHEN RAN THEN 'Y’ 60 Quigley 40
ELSE T 70 Rot hman 30
END AS EQL 80 Janes 100
FROM TEMP T 90 Koonitz 40
ORDER BY I D 100 Plotz 100 Y

Figure 694, Get random rows - Explanation
Getting "n" Random Rows

There are several ways to always get exactly "n" random rows from a set of matching rows.
In the following example, three rows are required:

Quirks in SQL 259

W TH
STAFF_NUVBERED AS
(SELECT S.*
, ROW NUMBER() OVER() AS ROW
FROM STAFF S
WHERE I D <= 100
).
COUNT_ROAS AS
(SELECT MAX(ROW) AS #ROWS
FROM STAFF_NUMBERED

)RANDO\/I_VALUES (RANH) AS
(VALUES (RAND())
, (RAND())
| , (RAND())

ROWS_TO_GET AS
(SELECT INT(RAN# * #ROAB) + 1 AS GET_ROW
FROM RANDOM VALUES

, COUNT_ROWS
)
SELECT ID
, NAMVE
FROM STAFF_NUVBERED
, RONS_TO_GET
WHERE ROWY = GET_ROW
ORDER BY I D;

Figure 695, Get random rows - Non-distinct

The above query works as follows:

First, the matching rowsin the STAFF table are assigned a row number.
Second, a count of the total number of matching rows is obtained.

Third, atemporary table with three random values is generated.

Graeme Birchall ©

10 Sanders
20 Per nal
90 Koonitz

Fourth, the three random val ues are joined to the row-count value, resulting in three new

row-number values (of type integer) within the correct range.

Finally, the three row-number values are joined to the original temporary table.

There are some problems with the above query:

If more than a small number of random rows are required, the random values cannot be

defined using the VALUES phrase. Some recursive code can do the job.

In the extremely unlikely event that the RAND function returns the value "one", no row

will match. CASE logic can be used to address this issue.

Ignoring the problem just mentioned, the above query will always return three rows, but
the rows may not be different rows. Depending on what the three RAND calls generate,

the query may even return just one row - repeated three times.

In contrast to the above query, the following will always return three different random rows:

260

DB2 UDB V8.1 Cookbook ©

SELECT I D ANSVER
, NAVE —==—=—==—=====
FROM (SELECT S. * | D NAME
, ROW NUMBER() OVER(CRDER BY RAND()) AS R -- --------
FROM STAFF S 10 Sanders
WHERE |D <= 100 40 O Brien
) AS XXX 60 Quigley
VWHERE R <=3
ORDER BY | D,

Figure 696, Get random rows - Distinct

In this query, the matching rows are first numbered in random order, and then the three rows
with the lowest row number are selected.

Summary of Issues

The lesson to be learnt here is that one must consider exactly how random one wants to be
when one goes searching for a set of random rows:

* Does one want the number of rows returned to be also somewhat random?
* Doesonewant exactly "n" rows, but it is OK to get the same row twice?

¢ Doesonewant exactly "n" distinct (i.e. different) random rows?

Date/Time Manipulation

| once had a table that contained two fields - the timestamp when an event began, and the
elapsed time of the event. To get the end-time of the event, | added the elapsed time to the
begin-timestamp - asin the following SQL.:

W TH TEMP1 (BGN TSTAMP, ELP _SEC) AS

(VALUES (TI MESTAMP(’ 2001- 01-15- 01. 02. 03. 000000’), 1.234)
, (TI MESTAMP(’ 2001- 01- 15- 01. 02. 03. 123456’), 1.234)

)
SELECT BGN_TSTAWP

, ELP_SEC

, BGN_TSTAMP + ELP_SEC SECONDS AS END TSTAWP
FROM TEMPL;

BGN_TSTAWP ELP_SEC END_TSTAWP

2001-01-15-01. 02. 03. 000000 1.234 2001-01-15-01.02. 04. 000000
2001- 01-15-01. 02. 03. 123456 1.234 2001-01-15-01.02. 04. 123456

Figure 697, Date/Time manipulation - wrong

Asyou can see, my end-timeisincorrect. In particular, the factional part of the elapsed time
has not been used in the addition. | subsequently found out that DB2 never uses the fractional
part of a number in date/time calculations. So to get the right answer | multiplied my elapsed
time by one million and added microseconds:

Quirks in SQL 261

Graeme Birchall ©

W TH TEMP1 (BGN TSTAWP, ELP_SEC) AS
(VALUES (TI MESTAMP(’ 2001- 01-15- 01. 02. 03. 000000’), 1.234)
, (TI MESTAMP(’ 2001- 01- 15- 01. 02. 03. 123456’), 1.234)

)
SELECT BGN_TSTAWP

, ELP_SEC

, BGN_TSTAMP + (ELP_SEC *1E6) M CROSECONDS AS END TSTAMP
FROM TEMPL;

BGN_TSTAWP ELP_SEC END_TSTAWP

2001-01-15-01. 02. 03. 000000 1.234 2001-01-15-01.02. 04. 234000
2001- 01-15-01. 02. 03. 123456 1.234 2001-01-15-01.02. 04. 357456

Figure 698, Date/Time manipulation - right

DB2 doesn't use the fractional part of a number in date/time cal culations because such avalue
often makes no sense. For example, 3.3 months or 2.2 years are meaningless values - given
that neither a month nor ayear has afixed length.

The Solution

When one has afractional date/time value (e.g. 5.1 days, 4.2 hours, or 3.1 seconds) that is for
aperiod of fixed length that one wants to use in a date/time cal culation, then one hasto con-
vert the value into some whole number of a more precise time period. Thus 5.1 days times
82,800 will give one the equivalent number of seconds and 6.2 seconds times 1E6 (i.e. one
million) will give one the equivalent number of microseconds.

Use of LIKE on VARCHAR

Sometimes one value can be EQUAL to ancther, but is not LIKE the same. To illustrate, the
following SQL refersto two fields of interest, one CHAR, and the other VARCHAR. Ob-
serve below that both rows in these two fields are seemingly equal:

W TH TEMPL (0, C1, V1) AS (VALUES ANSVER
(" A, CHAR(’ ', 1), VARCHAR(’ ', 1)), mooo——
("B, CHAR(’ ', 1), VARCHAR('’ ,1))) co

SELECT CO e

FROM TEMP1 A

WHERE Cl = V1 B
AND C1 LIKE '’ 7;

Figure 699, Use LIKE on CHAR field

Look what happens when we change the final predicate from matching on C1 to V1. Now
only one row matches our search criteria.

W TH TEMPL (0, C1, V1) AS (VALUES ANSVEER
(" A, CHAR(’ ', 1), VARCHAR(’ ', 1)), ======
("B, CHAR(’ ', 1), VARCHAR('’ ,1))) co

SELECT CO --

FROM TEMP1 A

WHERE Cl1 = V1
AND V1 LIKE"’

Figure 700, Use LIKE oﬁ VARCHAR field

To explain, observe that one of the VARCHAR rows above has one blank byte, while the
other has no data. When an EQUAL check is done on aVARCHAR field, the value is padded
with blanks (if needed) before the match. Thisiswhy C1 equals C2 for both rows. However,

262

DB2 UDB V8.1 Cookbook ©

the LIKE check does not pad VARCHAR fields with blanks. So the LIKE test in the second

SQL statement only matched on one row.

The RTRIM function can be used to remove all trailing blanks and so get around this prob-

lem:
W TH TEMP1 (CO, C1, V1) AS (VALUES
(" A, CHAR(’ ', 1), VARCHAR(' ', 1)),
("B, CHAR(’ ', 1), VARCHAR('' ,1)))
SELECT CO0
FROM TEMP1

WHERE Cl = V1
AND RTRIM V1) LIKE '’;

Figure 701, Use RTRIM to remove trailing blanks

Comparing Weeks

One often wants to compare what happened in part of one year against the same period in
another year. For example, one might compare January sales over a decade period. This may
be a perfectly valid thing to do when comparing whole months, but it rarely makes sense

when comparing weeks or individual days.

The problem with comparing weeks from one year to the next is that the same week (as de-
fined by DB2) rarely encompasses the same set of days. The following query illustrates this
point by showing the set of days that make up week 33 over aten-year period. Observe that

some years have almost no overlap with the next:

WTH TEMP1 (YYMVDD) AS
(VALUES DATE(’ 2000-01-01")

UNTON ALL
SELECT YYMVDD + 1 DAY
FROM TEMPL
WHERE YYMVDD < ' 2010- 12- 31’
)
SELECT YY AS YEAR
, CHAR(M N(YYMVDD) , | SO AS M N_DT
, CHAR(MAX(YYMVDD) , | SO) AS MAX_DT
FROM (SELECT YYMVDD
, YEAR(YYMVDD) YY
. VEEK(YYMVDD) VK
FROM TEMP1
WHERE WEEK(YYMVDD) = 33
) AS XXX
GROUP BY YY
\AK.

Figure 702, ’Cor’npari ng week 33 over 10 years

DB2 Truncates, not Rounds

2000- 08- 06
2001-08-12
2002-08-11
2003-08-10
2004-08-08
2005- 08- 07
2006-08-13
2007-08-12
2008-08-10
2009- 08- 09
2010-08-08

2000-08-12
2001-08-18
2002-08-17
2003- 08- 16
2004-08- 14
2005- 08-13
2006- 08-19
2007-08-18
2008-08-16
2009- 08- 15
2010-08-14

When converting from one numeric type to another where there is aloss of precision, DB2
always truncates not rounds. For this reason, the S1 result below is not equal to the S2 result:

SELECT SUM | NTEGER(SALARY)) AS S1
, I NTEGER(SUM SALARY)) AS S2

FROM STAFF;

Figure 703, DB2 data truncation

583633 583647

If one must do scalar conversions before the column function, use the ROUND function to

improve the accuracy of the result:

Quirks in SQL

263

Graeme Birchall ©

SELECT SUM | NTEGER(ROUND(SALARY, -1))) AS S1 ANSVER
, | NTECER(SUM SALARY)) AS S2 =============
FROM STAFF; S1 S2

583640 583647
Figure 704, DB2 data rounding

CASE Checks in Wrong Sequence

The case WHEN checks are processed in the order that they are found. The first one that
matchesisthe one used. To illustrate, the following statement will always return the value
'FEM’ in the SXX field:

SELECT LASTNAVE ANSVER
y SEX s —————
, CASE LASTNANVE SX SXX
WHEN SEX >= 'F° THEN 'FEM cemmemeeee o s
WHEN SEX >= 'M THEN ' MAL’ JEFFERSON M FEM
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M FEM
VWHERE LASTNAME LI KE ' J%
ORDER BY 1;

Figure 705, Case WHEN Processing - Incorrect
By contrast, in the next statement, the SXX value will reflect the related SEX value:

SELECT LASTNAME ANSVEER
, SEX —=—========—=======
, CASE LASTNAME ~ SX SXX
WHEN SEX >= "M THEN 'MAL' eeeeeeeeao oo oo
WHEN SEX >= 'F THEN ' FEM JEFFERSON M MNAL
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M MAL
VHERE LASTNAME LI KE * J%
ORDER BY 1;
Figure 706, Case WHEN Praocessing - Correct
NOTE: See page 32 for more information on this subject.
Division and Average
The following statement gets two results, which is correct?
SELECT AV SALARY) / AVG COMM) AS Al ANSVER >>> Al A2
, AVG(SALARY / COW) AS A2 R
FROM STAFF; 32 61.98

Figure 707, Use LIKE on VARCHAR field

Arguably, either answer could be correct - depending upon what the user wants. In practice,
the first answer is almost always what they intended. The second answer is somewhat flawed
because it gives no weighting to the absolute size of the valuesin each row (i.e. abig SAL-
ARY divided by abig COMM isthe same as a small divided by asmall).

Date Output Order

DB2 has a bind option that specifies the output format of date-time data. This bind option has
no impact on the sequence with which date-time dataiis presented. To illustrate, the plan that
was used to run the following SQL is set to the USA date-time-format bind option. Observe
that the month isthe first field printed, but the rows are sequenced by year:

264

DB2 UDB V8.1 Cookbook ©

SELECT H REDATE ANSVER

FROM EMPLOYEE —=========
VWHERE H REDATE < ' 1960-01- 01’ 05/ 05/ 1947
ORDER BY 1; 08/ 17/ 1949

05/ 16/ 1958
Figure 708, DATE output in year, month, day order

When the CHAR function is used to convert the date-time value into a character value, the
sort order is now afunction of the display sequence, not the internal date-time order:

SELECT CHAR(HI REDATE, USA) ANSVER

FROM EMPLOYEE —=========
VWHERE H REDATE < ' 1960-01- 01’ 05/ 05/ 1947
ORDER BY 1; 05/ 16/ 1958

08/ 17/ 1949
Figure 709, DATE output in month, day, year order

In general, always bind plans so that date-time values are displayed in the preferred format.
Using the CHAR function to change the format can be unwise.

Ambiguous Cursors

The following pseudo-code will fetch all of the rows in the STAFF table (which has ID’s
ranging from 10 to 350) and, then while still fetching, insert new rows into the same STAFF
table that are the same as those already there, but with ID’s that are 500 larger.

EXEC- SQL

DECLARE FRED CURSOR FOR
SELECT *
FROM STAFF
WHERE ID < 1000
ORDER BY I D;

END- EXEC;

EXEC- SQL
OPEN FRED
END- EXEC,

DO UNTIL SQ.CODE = 100;

EXEC- SQL
FETCH FRED
INTO : HOST- VARS
END- EXEC;

| F SQLCODE <> 100 THEN DO,
SET HOST-VAR. I D = HOST-VAR. | D + 500;
EXEC- SQL
| NSERT | NTO STAFF VALUES (: HOST- VARS)
END- EXEC;
END- DO,

END- DO,

EXEC- SQL
CLOSE FRED
END- EXEC,

Figure 710, Ambiguous Cursor

We want to know how many rows will be fetched, and so inserted? The answer isthat it de-
pends upon the indexes available. If thereis an index on ID, and the cursor uses that index for
the ORDER BY,, there will 70 rows fetched and inserted. If the ORDER BY isdone using a
row sort (i.e. at OPEN CURSOR time) only 35 rows will be fetched and inserted.

Quirks in SQL 265

Graeme Birchall ©

Be aware that DB2, unlike some other database products, does NOT (always) retrieve all of
the matching rows at OPEN CURSOR time. Furthermore, understand that thisis a good thing
for it means that DB2 (usually) does not process any row that you do not need.

DB2 isvery good at always returning the same answer, regardless of the access path used. It
is equally good at giving consistent results when the same logical statement iswrittenina
different manner (e.g. A=B vs. B=A). What it has never done consistently (and never will) is
guarantee that concurrent read and write statements (being run by the same user) will always
give the same results.

Floating Point Numbers

The following SQL repetitively multiplies a floating-point number by ten:

W TH TEMP (F1) AS
(VALUES FLOAT(1.23456789)
UNI ON ALL

SELECT F1 * 10

FROM TEMP

WHERE F1 < 1E18

)
SELECT F1 AS FLOAT1
, DEC(F1, 19) AS DECI MAL1
,BIG NT(F1) AS BI G NT1
FROM TEMP;

Figure 711, Multiply floating-point number by ten, SQL
After awhile, things get interesting:

FLOAT1 DECI MAL1 Bl G NT1
+1. 23456789000000E+000 1. 1
+1. 23456789000000E+001 12. 12
+1. 23456789000000E+002 123. 123
+1. 23456789000000E+003 1234. 1234
+1. 23456789000000E+004 12345. 12345
+1. 23456789000000E+005 123456. 123456
+1. 23456789000000E+006 1234567. 1234567
+1. 23456789000000E+007 12345678. 12345678
+1. 23456789000000E+008 123456789. 123456788
+1. 23456789000000E+009 1234567890. 1234567889
+1. 23456789000000E+010 12345678900. 12345678899
+1. 23456789000000E+011 123456789000. 123456788999
+1. 23456789000000E+012 1234567890000. 1234567889999
+1. 23456789000000E+013 12345678900000. 12345678899999
+1. 23456789000000E+014 123456789000000. 123456788999999
+1. 23456789000000E+015 1234567890000000. 1234567889999999
+1. 23456789000000E+016 12345678900000000. 12345678899999998

+1. 23456789000000E+017 123456789000000000. 123456788999999984
+1. 23456789000000E+018 1234567890000000000. 1234567889999999744

Figure 712, Multiply floating-point number by ten, answer

Why do the bigint values differ from the original float values? The answer is that they don't, it
isthe decimal values that differ. Because thisis not what you seein front of your eyes, we
need to explain. Note that there are no bugs here, everything isworking fine.

Perhaps the most insidious problem involved with using floating point numbersis that the
number you see is not always the number that you have. DB2 stores the value internaly in
binary format, and when it displaysit, it shows a decimal approximation of the underlying
binary value. This can cause you to get very strange results like the following:

266

DB2 UDB V8.1 Cookbook ©

W TH TEMP (F1, F2) AS
(VALUES (FLOAT(1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)
, FLOAT(1. 23456789E8)))

SELECT F1
, F2
FROM TEMP ANSVEER

WHERE F1 <> F2; —————=——=——=——=——-——-——-—————-—-—————-—=-=—==—==—======

+1. 23456789000000E+008 +1.23456789000000E+008
Figure 713, Two numbers that look equal, but aren't equal

We can use the HEX function to show that, internally, the two numbers being compared
above are not equal:

W TH TEMP (F1, F2) AS

(VALUES (FLOAT(1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)

, FLOAT(1. 23456789E8)))
SELECT HEX(F1) AS HEX_F1
, HEX(F2) AS HEX_F2
FROM TEMP ANSVER
WHERE F1 <> F2; S =====

FFFFFF53346F9D41 00000054346F9D41
Figure 714, Two numbers that look equal, but aren’t equal, shown in HEX

Now we can explain what is going on in the recursive code shown at the start of this section.
The same value is be displayed using three different methods:

« Thefloating-point representation (on the left) isreally a decimal approximation (done
using rounding) of the underlying binary value.

¢ When the floating-point data was converted to decimal (in the middle), it was rounded
using the same method that is used when it is displayed directly.

¢ When the floating-point data was converted to bigint (on the right), no rounding was
done because both formats hold binary values.

In any computer-based number system, when you do division, you can get imprecise results
due to rounding. For example, when you divide 1 by 3 you get "one third", which can not be
stored accurately in either a decimal or a binary number system. Because they store numbers
internally differently, dividing the same number in floating-point vs. decimal can result in
different results. Hereis an example:
W TH
TEMP1 (DECL, DBL1) AS

(VALUES (DECI MAL(1), DOUBLE(1)))
, TEMP2 (DEC1, DEC2, DBL1, DBL2) AS

(SELECT DEC1
,DECL / 3 AS DEC2
, DBL1 ANSVER (1 row returned)
, DBL1 /| 3 AS DBL2 e
FROM TEMP1) DECL = 1.0
SELECT * DEC2 = 0.33333333333333333333
FROM TEMP2 DBL1 = +1. 00000000000000E+000
WHERE DBL2 <> DECZ; DBL2 = +3.33333333333333E-001

Figure 715, Comparing float and decimal division

When you do multiplication of afractional floating-point number, you can aso encounter
rounding differences with respect to decimal. To illustrate this, the following SQL starts with
two numbers that are the same, and then keeps multiplying them by ten:

Quirks in SQL 267

Graeme Birchall ©

WTH TEMP (F1, DI1) AS
(VALUES (FLOAT(1.23456789)

, DEC(1. 23456789, 20, 10))
UNI ON ALL
SELECT F1 * 10

,DL * 10
FROM TEMP
WHERE F1 < 1E9

)
SELECT F1
, D1
, CASE
WHEN D1 = F1 THEN ' SAME
ELSE " DI FF
END AS COVPARE
FROM TEMP,

Figure 716, Comparing float and decimal multiplication, SQL

Hereisthe answer:

F1 D1 COVPARE
+1. 23456789000000E+000 1.2345678900 SAME
+1. 23456789000000E+001 12. 3456789000 SAME
+1. 23456789000000E+002 123. 4567890000 DI FF
+1. 23456789000000E+003 1234. 5678900000 DI FF
+1. 23456789000000E+004 12345. 6789000000 DI FF
+1. 23456789000000E+005 123456. 7890000000 DI FF
+1. 23456789000000E+006 1234567. 8900000000 SAME

+1. 23456789000000E+007 12345678. 9000000000 DI FF
+1. 23456789000000E+008 123456789. 0000000000 DI FF
+1. 23456789000000E+009 1234567890. 0000000000 DI FF

Figure 717, Comparing float and decimal multiplication, answer

Aswe mentioned earlier, both floating-point and decimal fields have trouble accurately stor-
ing certain fractional values. For example, neither can store "one third". There are also some
numbers that can be stored in decimal, but not in floating-point. One common value is "one
tenth”, which as the following SQL shows, is approximated in floating-point:

W TH TEMP (F1) AS ANSVER
(VALUES FLOO\T(0.]_)) —————————=-———-——————————=———=-——=—=—=—=—=—=—=====
SELECT F1 F1 HEX_F1

JHEX(FL) AS HEX FL1 wcmmmmmmmmmmcecmmmce oo
FROM TEMP; +1. 00000000000000E- 001 9A9999999999B93F

Figure 718, Internal representation of "one tenth” in floating-point

In conclusion, afloating-point number is, in many ways, only an approximation of atruein-
teger or decimal value. For this reason, this field type should not be used for monetary data,
nor for other data where exact precision is required.

Legally Incorrect SQL

Imagine that we have a cute little view that is defined thus:

CREATE VI EW DAMN_LAWERS (DB2 , V5) AS
(VALUES (0001, 2)
, (1234, 2));

Figure 719, Sample view definition

Now imagine that we run the following query against this view:

268

DB2 UDB V8.1 Cookbook ©

SELECT DB2/ V5 AS ANSVER ANSVER
FROM DAWMN _LAWYERS, aaaae
0

617

Figure 720, Trademark Invalid SQL

Interestingly enough, the above answer is technically correct but, according to IBM, the SQL
(actually, they were talking about something else, but it also applies to this SQL) is not quite
right. We have been informed (in writing), to quote: "try not to use the dash after 'DB2’. That
isaninvalid way to use the DB2 trademark - nothing can be attached to 'DB2'." So, as per
IBM’s trademark requirements, we have changed the SQL thus:

SELECT DB2 / V5 AS ANSVEER ANSVER
FROM DAWMN _LAWYERS, aaaae

Figure 721, Trademark Valid SQL

Fortunately, we still get the same (correct) answer.

Quirks in SQL 269

DB2 UDB V8.1 Cookbook ©

Appendix

DB2 Sample Tables

Class Schedule
CREATE TABLE CL_SCHED

(CLASS_CODE CHARACTER (00007)
, DAY SMALLI NT

, STARTI NG TI MVE

, ENDI NG TI ME) ;

Figure 722, CL_SCHED sampletable - DDL

There is no sample data for this table.

Department
CREATE TABLE DEPARTMENT
(DEPTNO CHARACTER (00003)
, DEPTNAME VARCHAR (00029)
, MGRNO CHARACTER (00006)
, ADMRDEPT CHARACTER (00003)
, LOCATI ON CHARACTER (00016)

, PRI MARY KEY(DEPTNO));
Figure 723, DEPARTMENT sample table - DDL

DEPTNO DEPTNAME MGERNO
A0O SPI FFY COWUTER SERVI CE DIV. 000010
BO1 PLANNI NG 000020
co1 | NFORVATI ON CENTER 000030
D01 DEVELOPMENT CENTER -

D11 MANUFACTURI NG SYSTEMS 000060
D21 ADM NI STRATI ON SYSTEMS 000070
EO1 SUPPORT SERVI CES 000050
Ell OPERATI ONS 000090
E21 SOFTWARE SUPPORT 000100

Figure 724, DEPARTMENT sample table - Data

Employee

CREATE TABLE EMPLOYEE

(EMPNO CHARACTER (00006)

, FI RSTNVE VARCHAR (00012)

,MDINT CHARACTER (00001)

, LASTNAMVE VARCHAR (00015)

, WORKDEPT CHARACTER (00003)

, PHONENO CHARACTER (00004)

, H REDATE DATE

,JOB CHARACTER (00008)

, EDLEVEL SMALLI NT

, SEX CHARACTER (00001)

, Bl RTHDATE DATE

, SALARY DECI MAL (09, 02)

, BONUS DECI MAL (09, 02)
COW DECI MAL (09, 02)

. PRI MARY KEY(EMPNO)) :
Figure 725, EMPLOYEE sample table - DDL

Appendix

ADVRDEPT LOCATI ON

NOT NULL
NOT NULL

NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL

NOT NULL

271

Graeme Birchall ©

EMPNO FIRSTNME M LASTNAME WKD H REDATE JCB ED S Bl RTHDTE SALRY BONS COMW
000010 O-R STINE | HAAS A0 01/ 01/ 1965 PRES 18 F 19330824 52750 1000 4220
000020 M CHAEL L THOMPSON BO1 10/ 10/ 1973 MANAGER 18 M 19480202 41250 800 3300
000030 SALLY A KWAN Q01 04/05/1975 MANAGER 20 F 19410511 38250 800 3060
000050 JC-N B GEYER EO1 08/17/1949 MANAGER 16 M 19250915 40175 800 3214
000060 |IRVNG F STERN DL1 09/ 14/1973 MANAGER 16 M 19450707 32250 500 2580
000070 EVA D PULASKI D21 09/30/1980 MANAGER 16 F 19530526 36170 700 2893
000090 EILEEN ~ WHENDERSON E11 08/15/1970 MANAGER 16 F 19410515 29750 600 2380
000100 THEODORE Q SPENSER E21 06/19/ 1980 MANAGER 14 M 19561218 26150 500 2092
000110 VI NOENZO G LUCCHESSI AD0 05/ 16/ 1958 SALESREP 19 M 19291105 46500 900 3720
000120 SEAN O CONNELL AQ0 12/05/1963 QLERK 14 M 19421018 29250 600 2340
000130 DOLORES M QU NTANA (D1 07/28/ 1971 ANALYST 16 F 19250915 23800 500 1904
000140 HEATHER A NCHOLLS (D1 12/15/1976 ANALYST 18 F 19460119 28420 600 2274
000150 BRUCE ADAMBON D11 02/12/1972 DESI G\ER 16 M 19470517 25280 500 2022
000160 ELI ZABETH R PIANKA D11 10/ 11/ 1977 DESI GNER 17 F 19550412 22250 400 1780
000170 MASATOSH J YOSH MURA D11 09/ 15/ 1978 DESI GNER 16 M 19510105 24680 500 1974
000180 MARILYN S SOQUTTEN D11 07/ 07/ 1973 DESI G\ER 17 F 19490221 21340 500 1707
000190 JAMES HWALKER D11 07/26/1974 DESI G\ER 16 M 19520625 20450 400 1636
000200 DAVI D BROM D11 03/03/1966 DESI G\ER 16 M 19410529 27740 600 2217
000210 WLLIAM T JONES D11 04/11/1979 DESI G\ER 17 M 19530223 18270 400 1462
000220 JENN FER K LUTZ D11 08/29/1968 DESI G\ER 18 F 19480319 29840 600 2387
000230 JAMES J JEFFERSON [l 11/21/1966 CLERK 14 M 19350530 22180 400 1774
000240 SALVATCRE MMMRINO D21 12/05/1979 CLERK 17 M 19540331 28760 600 2301
000250 DANEL S SMTH D21 10/30/1969 CLERK 15 M 19391112 19180 400 1534
000260 SYBI L P JOANSCN D21 09/11/1975 CLERK 16 F 19361005 17250 300 1380
000270 MAR A L PEREZ D21 09/30/1980 CLERK 15 F 19530526 27380 500 2190
000280 ETHEL R SOH\EI DER E11 03/ 24/ 1967 CPERATCR 17 F 19360328 26250 500 2100
000290 JO-N R PARKER E11 05/30/ 1980 CPERATCR 12 M 19460709 15340 300 1227
000300 PHLIP X SMTH E11 06/ 19/ 1972 CPERATCR 14 M 19361027 17750 400 1420
000310 MALDE F SETR GHT E11 09/ 12/ 1964 CPERATCR 12 F 19310421 15900 300 1272
000320 RAMLAL V MEHTA E21 07/07/1965 FI ELDREP 16 M 19320811 19950 400 1596
000330 WNG LEE E21 02/23/1976 FI ELDREP 14 M 19410718 25370 500 2030
000340 JASON R GOUNOT E21 05/05/1947 FIELDREP 16 M 19260517 23840 500 1907

Figure 726, EMPLOYEE sample table - Data

Employee Activity
CREATE TABLE ENP_ACT
(EMPNO CHARACTER (00006) NOT NULL
, PROINO CHARACTER (00006) NOT NULL
, ACTNO SMALLI NT NOT NULL
, EMPTI ME DECI MAL (05, 02)

, EMBTDATE DATE
, EMENDATE DATE) ;

Figure 727, EMP_ACT sample table - DDL
EMPNO PRQINO ACTNO EMPTIME EMSTDATE EMENDATE
000010 MA2100 10 0.50 01/01/1982 11/01/1982
000010 MA2110 10 1.00 01/01/1982 02/01/1983
000010 AD3100 10 0.50 01/01/1982 07/01/1982
000020 PL2100 30 1.00 01/01/1982 09/15/1982
000030 | F1000 10 0.50 06/01/1982 01/01/1983
000030 | F2000 10 0.50 01/01/1982 01/01/1983
000050 CP1000 10 0.25 01/01/1982 02/01/1983
000050 0P2010 10 0.75 01/01/1982 02/01/1983
000070 AD3110 10 1.00 01/01/1982 02/01/1983
000090 CP1010 10 1.00 01/01/1982 02/01/1983
000100 0P2010 10 1.00 01/01/1982 02/01/1983
000110 MA2100 20 1.00 01/01/1982 03/01/1982
000130 | F1000 90 1.00 01/01/1982 10/01/1982
000130 | F1000 100 0.50 10/01/1982 01/01/1983

Figure 728, EMP_ACT sampletable - Data (1 of 2)

272

DB2 Sample Tables

DB2 UDB V8.1 Cookbook ©

000140
000140
000140
000140
000140
000150
000150
000160
000170
000170
000170
000180
000190
000190
000200
000200
000210
000210
000220
000230
000230
000230
000230
000230
000240
000240
000250
000250
000250
000250
000250
000250
000250
000250
000250
000250
000260
000260
000260
000260
000260
000260
000260
000270
000270
000270
000270
000270
000270
000270
000280
000290
000300
000310
000320
000320
000330
000330
000340
000340

Figure 729, EMP_ACT sampletable - Data (2 of 2)

Appendix

| F1000
| F2000
I F2000
I F2000
| F2000
MA2112
MA2112
MA2113
MA2112
MA2112
MA2113
MA2113
MA2112
MA2112
MA2111
MA2111
MA2113
MA2113
MA2111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
OoP1010
OoP1010
OoP1010
OP1010
oP2011
oP2011
oP2012
oP2012
oP2013
oP2013

170

COCOCCORrPPPORPPOOROOROORPOOOOORPORPOORRPRPRPOOCORPOORRPRPRPRPRPRRERRPRPOOORO

EMSTDATE

10/ 01/ 1982
01/ 01/ 1982
03/ 01/ 1982
03/ 01/ 1982
10/ 01/ 1982
01/ 01/ 1982
07/ 15/ 1982
07/ 15/ 1982
01/ 01/ 1982
06/ 01/ 1982
01/01/ 1982
04/ 01/ 1982
02/ 01/ 1982
10/ 01/ 1982
01/ 01/ 1982
06/ 15/ 1982
10/ 01/ 1982
10/ 01/ 1982
01/01/ 1982
01/ 01/ 1982
03/ 15/ 1982
03/ 15/ 1982
04/ 15/ 1982
10/ 15/ 1982
02/ 15/ 1982
09/ 15/ 1982
01/ 01/ 1982
02/ 01/ 1982
12/ 01/ 1982
01/01/1983
02/ 01/ 1982
03/ 15/ 1982
08/ 15/ 1982
08/ 15/ 1982
10/ 15/ 1982
08/ 15/ 1982
06/ 15/ 1982
07/ 01/ 1982
01/01/1982
03/ 01/ 1982
03/ 01/ 1982
04/ 15/ 1982
06/ 01/ 1982
03/ 01/ 1982
04/ 01/ 1982
09/ 01/ 1982
09/ 01/ 1982
10/ 15/ 1982
01/01/ 1982
03/ 01/ 1982
01/ 01/ 1982
01/ 01/ 1982
01/01/ 1982
01/01/ 1982
01/01/1982
01/01/1982
01/01/ 1982
01/01/ 1982
01/ 01/ 1982
01/ 01/ 1982

EMENDATE

01/01/1983
03/ 01/ 1982
07/01/ 1982
07/ 01/ 1982
01/01/1983
07/ 15/ 1982
02/ 01/ 1983
02/ 01/ 1983
06/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
06/ 15/ 1982
10/ 01/ 1982
10/ 01/ 1983
06/ 15/ 1982
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
03/ 15/ 1982
04/ 15/ 1982
10/ 15/ 1982
10/ 15/ 1982
01/01/ 1983
09/ 15/ 1982
01/01/1983
02/ 01/ 1982
03/ 15/ 1982
01/01/ 1983
02/ 01/ 1983
03/ 15/ 1982
08/ 15/ 1982
10/ 15/ 1982
10/ 15/ 1982
12/ 01/ 1982
01/01/1983
07/ 01/ 1982
02/ 01/ 1983
03/ 01/ 1982
04/ 15/ 1982
04/ 15/ 1982
06/ 01/ 1982
07/ 01/ 1982
04/ 01/ 1982
09/ 01/ 1982
10/ 15/ 1982
10/ 15/ 1982
02/ 01/ 1983
03/ 01/ 1982
04/ 01/ 1982
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983
02/ 01/ 1983

273

Employee Photo
CREATE TABLE EMP_PHOTO

(EMPNO CHARACTER (00006)
, PHOTO_FORMAT VARCHAR (00010)
. PI CTURE BLOB (0100) K

, PRI MARY KEY(EMPNO, PHOTO FORMAT)) ;
Figure 730, EMP_PHOTO sampletable - DDL

EMPNO PHOTO FORVAT Pl CTURE

000130 bitmap <<NOT SHONA>>
000130 gif <<NOT SHONA>>
000130 xwd <<NOT SHON>>
000140 bi tnap <<NOT SHON\>>
000140 gif <<NOT SHON\>>
000140 xwd <<NOT SHONR>>
000150 bi t map <<NOT SHONA>>
000150 gif <<NOT SHON>>
000150 xwd <<NOT SHON>>
000190 bi t map <<NOT SHON>>
000190 gif <<NOT SHONR>>
000190 xwd <<NOT SHON>>

Figure 731, EMP_PHOTO sample table - Data

Employee Resume
CREATE TABLE EMP_RESUME

(EMPNO CHARACTER (00006)
, RESUVE_FORVAT VARCHAR (00010)
, RESUMVE CLOB (0005) K

, PRI MARY KEY(EMPNO, RESUVE_FORNAT)) ;
Figure 732, EMP_RESUME sampletable - DDL

EMPNO RESUME_FORVAT RESUMVE

000130 asci i <<NOT SHONN>>
000130 script <<NOT SHON\>>
000140 ascii <<NOT SHONN>>
000140 script <<NOT SHONN>>
000150 asci i <<NOT SHONN>>
000150 scri pt <<NOT SHON>>
000190 asci i <<NOT SHONN>>
000190 script <<NOT SHONN>>

Figure 733, EMP_RESUME sampletable - Data

In Tray
CREATE TABLE | N_TRAY
(RECEI VED TI MESTAMP
, SCURCE CHARACTER (00008)
, SUBJECT CHARACTER (00064)
, NOTE_TEXT VARCHAR (03000)) ;

Figure 734, IN_TRAY sample table - DDL

There is no sample data for this table.

274

NOT NULL
NOT NULL

NOT NULL
NOT NULL

Graeme Birchall ©

DB2 Sample Tables

DB2 UDB V8.1 Cookbook ©

Organization
CREATE TABLE ORG

(DEPTNUMB SMALLI NT

, DEPTNAME VARCHAR (00014)

, MANAGER SMALLI NT

, DIVI SI ON VARCHAR (00010)

, LOCATI ON VARCHAR (00013)

, PRI MARY KEY(DEPTNUMB)) ;

Figure 735, ORG sample table - DDL

DEPTNUMB DEPTNAME MANAGER DI VI SI ON
10 Head Ofice 160 Corporate
15 New Engl and 50 Eastern
20 Md Atlantic 10 Eastern
38 South Atlantic 30 Eastern
42 Great Lakes 100 M dwest
51 Plains 140 M dwest
66 Pacific 270 Western
84 Mountain 290 Western

Figure 736, ORG sample table - Data

Project

CREATE TABLE PROJECT

(PROINO CHARACTER (00006)
, PRQONAMVE VARCHAR (00024)
, DEPTNO CHARACTER (00003)
, RESPEMP CHARACTER (00006)
, PRSTAFF DECI MAL (05, 02)
, PRSTDATE DATE

, PRENDATE DATE

, MAJPROJ CHARACTER (00006)

, PRI MARY KEY(PRQINO))

Figure 737, PROJECT sample table - DDL

DP# RESEMP PRSTAFF

NOT NULL

New Yor k

Bost on

Washi ngt on
Atl anta

Chi cago

Dal | as

San Franci sco
Denver

NOT NULL
NOT NULL
NOT NULL
NOT NULL

| F1000 QUERY SERVI CES
| F2000 USER EDUCATI ON
MA2100 VELD LI NE AUTQVATI N

CP2012 APPLI CATI ONS SUPPCRT
CP2013 DB/ DC SUPPCRT
PL2100 VELD LI NE PLANNI NG

D01 000010 6. 50
D21 000070 6. 00
D21 000230 2.00
D21 000250 1.00
D21 000270 2.00
Q01 000030 2.00
Q01 000030 1.00
D01 000010 12.00
D11 000060 9. 00
D11 000220 2.00
D11 000150 3.00
E01 000050 6. 00
E11 000090 5. 00
E01 000050 5. 00
D11 000160 3.00
E21 000100 4.00
E21 000320 1.00
E21 000330 1.00
E21 000340 1.00
BO1 000020 1.00

Figure 738, PROJECT sample table - Data

Appendix

01/01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/01/ 1982 02/ 01/ 1983
01/01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/01/ 1982 02/ 01/ 1983
01/01/ 1982 02/ 01/ 1983
01/ 01/1982 12/ 01/ 1982
01/ 01/1982 12/ 01/ 1982
01/01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
02/ 15/ 1982 12/ 01/ 1982
01/ 01/ 1982 02/ 01/ 1983
01/01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/ 01/ 1982 02/ 01/ 1983
01/ 01/ 1982 09/ 15/ 1982

ADB100
ADB110
AD3110
AD3110

MA2100
MA2110
MA2110

CP1000

MA2110
QP2000
CP2010
CP2010
CP2010
MA2100

275

Sales

CREATE TABLE SALES
(SALES_DATE

, SALES_PERSON

. REGI ON

. SALES

Figure 739, SALES sample table - DDL

SALES_DATE SALES_PERSON

DATE
VARCHAR (00015)
VARCHAR (00015)
I NTEGER) ;

REG ON

12/ 31/ 1995 LUCCHESSI
12/ 31/ 1995 LEE

12/ 31/ 1995 LEE

12/ 31/ 1995 LEE

12/ 31/1995 GOUNOT
03/ 29/ 1996 LUCCHESSI
03/ 29/ 1996 LUCCHESSI
03/ 29/ 1996 LEE

03/ 29/ 1996 LEE

03/ 29/ 1996 LEE

03/ 29/ 1996 LEE

03/ 29/ 1996 GOUNOT
03/ 29/ 1996 GOUNOT
03/ 29/ 1996 GOUNOT
03/ 30/ 1996 LUCCHESSI
03/30/ 1996 LUCCHESSI
03/30/ 1996 LUCCHESSI
03/ 30/ 1996 LEE

03/ 30/ 1996 LEE
03/30/ 1996 LEE
03/30/ 1996 LEE

03/ 30/ 1996 GOUNOT
03/ 30/ 1996 GOUNOT
03/30/ 1996 GOUNOT
03/31/ 1996 LUCCHESSI
03/31/1996 LEE
03/31/1996 LEE
03/31/1996 LEE
03/31/1996 LEE
03/31/ 1996 GOUNOT
03/ 31/ 1996 GOUNOT
04/ 01/ 1996 LUCCHESSI
04/ 01/ 1996 LUCCHESSI
04/ 01/ 1996 LEE
04/01/1996 LEE
04/01/1996 LEE

04/ 01/ 1996 LEE

04/ 01/ 1996 GOUNOT
04/ 01/ 1996 GOUNOT
04/ 01/ 1996 GOUNOT
04/ 01/ 1996 GOUNOT

Ontari o- Sout h
Ontari o- Sout h
Quebec

Mani t oba
Quebec

Ontari o- Sout h
Quebec

Ont ari o- Sout h
Ontario-North
Quebec

Mani t oba
Ontari o- Sout h
Quebec

Mani t oba
Ontari o- Sout h
Quebec

Mani t oba
Ontari o- Sout h
Ontario-North
Quebec

Mani t oba

Ont ari o- Sout h
Quebec

Mani t oba

Mani t oba
Ontari o- Sout h
Ontario-North
Quebec

Mani t oba

Ont ari o- Sout h
Quebec

Ontari o- Sout h
Mani t oba
Ontari o- Sout h
Ontario-North
Quebec

Mani t oba
Ontari o- Sout h
Ontario-North
Quebec

Mani t oba

Figure 740, SALES sample table - Data

Staff

CREATE TABLE STAFF
(1D

, NAMVE

, DEPT

, JOB

. YEARS

, SALARY

, COWM
, PRIMARY KEY(1D));

SMALLI NT
VARCHAR (00009)
SMALLI NT

CHARACTER (00005)
SNMALLI NT

DECI MAL (07, 02)
DECI MAL (07, 02)

Figure 741, STAFF sampletable - DDL

276

~NWPRPWOO' OFRPWRERNWNWRARRPRPRPONANWNRPNRPNRPWAOWNNRPWRNRER,WRE

NOT NULL

Graeme Birchall ©

DB2 Sample Tables

DB2 UDB V8.1 Cookbook ©

Figure 742, STAFF sample table - Data

Appendix

Qui gl ey
Rot hnan
Janes
Kooni tz
Pl otz
Ngan
Naught on
Yamaguchi
Fraye
WIliams
Mol i nare
Kerm sch
Abr ahars
Snei der
Scoutten
Lu

Smith
Lundqui st
Dani el s
Weel er
Jones
Lea

W son
Qi ll
Davi s
Graham
CGonzal es
Bur ke
Edwar ds
Gaf ney

YEARS

[y

[

[EnY

=
ONFPRARWUUOOONODUITWNO ' OWA~NOOO!' INO ' N' OO U100 N

SALARY

612.

846.

650.
1152.
128.
1386.

206.
180.
75.

637.

110.
236.
126.

84.

992.
189.

513.

811.

806.
200.
844.
55.
1285.
188.

277

DB2 UDB V8.1 Cookbook ©

Book Binding

Below is a quick-and-dirty technique for making a book out of this book. The object of the
exercise isto have amanual that will last along time, and that will aso lie flat when opened
up. All suggested actions are done at your own risk.

Tools Required
¢ PRINTER, to print the book.
e KNIFE, to trim the tape used to bind the book.

¢ BINDERCLIPS, (¥2" size), to hold the pages together while gluing. To bind larger books,
or to do multiple books in one go, use two or more cheap screw clamps.

» CARDBOARD: Two pieces of thick card, to also help hold things together while gluing.
Consumables

Ignoring the capital costs mentioned above, the cost of making a bound book should work out
to about $4.00 per item, amost al of which is spent on the paper and toner. To bind an al-
ready printed copy should cost less than fifty cents.

¢ PAPER and TONER, to print the book.
* CARD STOCK, for the front and back covers.

e GLUE, to bind the book. Cheap rubber cement will do the job The glue must come with
an applicator brush in the bottle. Sears hardware stores sell a more potent flavour called
Duro Contact Cement that is quite a bit better. Thisis toxic stuff, so be careful.

¢ CLOTH TAPE, (1" wide) to bind the spine. Pear| tape, available from Pearl stores, isfine.
Wider tape will be required if you are not printing double-sided.

« TIME: With practice, this process takes less than five minutes work per book.
Before you Start

* Makethat sure you have awell-ventilated space before gluing.

¢ Practice binding on some old scraps of paper.

e Kick dl kiddies out off the room.

Instructions

¢ PRINT THEBOOK - double-sided if you can. If you want, print the first and last pages on
card stock to make suitable protective covers.

e JOG THE PAGES, s0 that they are al lined up aong the inside spine. Make sure that every
page is perfectly aligned, otherwise some pages won't bind. Put a piece of thick card-
board on either side of the set of pages to be bound. These will hold the pages tight dur-
ing the gluing process.

Book Binding 279

Graeme Birchall ©

PLACE BINDER CLIPS on the top and bottom edges of the book (near the spine), to hold
everything in place while you glue. One can also put a couple on the outside edge to stop
the pages from splaying out in the next step. If the pages tend to spread out in the middle
of the spine, put one in the centre of the spine, then work around it when gluing. Make
sure there are no gaps between leafs, where the glue might soak in.

PLACE THE BOOK SPINE UPWARDS. The objective here isto have aflat surface to apply the
glue on. Lean the book against something if it does not stand up freely.

PUT ON GOBS OF GLUE. Let it soak into the paper for a bit, then put on some more.
LET THE GLUE DRY for at least half an hour. A couple of hours should be plenty.

REMOVE THE BINDER CLIPS that are holding the book together. Be careful because the
glue does not have much structural strength.

SEPARATE THE CARDBOARD that was put on either side of the book pages. To do this,
carefully open the cardboard pages up (as if reading their inside covers), then run the
knife down the glue between each board and the rest of the book.

LAY THE BOOK FLAT with the front side facing up. Be careful here because the rubber
cement is not very strong.

CuT THE TAPE to alength that is alittle longer that the height of the book.

PUT THE TAPE ON THE BOOK, lining it up so that about one quarter of an inch (of the tape
width) is on the front side of the book. Press the tape down firmly (on the front side only)
so that it is properly attached to the cover. Make sure that alittle bit of tape sticks out of
both the bottom and top ends of the spine.

TURN THE BOOK OVER (gently) and, from the rear side, wrap the cloth tape around the
spine of the book. Pull the tape around so that it puts the spine under compression.

TRIM EXCESS TAPE at either end of the spine using aknife or pair of scissors.
TAP DOWN THE TAPE so that it is firmly attached to the book.

LET THE BOOK DRY for aday. Then do the old "hold by a single leaf" test. Pick any page,
and gently pull the page up into the air. The book should follow without separating from
the page.

More Information

The binding technique that | have described above is fast and easy, but rather crude. 1t would
not be suitable if one was printing books for sale. There are, however, other binding methods
that take alittle more skill and better gear that can be used to make "store-quality” books. A
good reference on the general subject of home publishing is BOOK-ON-DEMAND PUBLISHING
(ISBN 1-881676-02-1) by Rupert Evans. The publisher is BlackLightning Publications Inc.
They are on the web (see: www.flashweb.com).

280

DB2 UDB V8.1 Cookbook ©

Index

A
ABSfunction, 75
ACOS function, 76
AGGREGATION function, 66
ALIAS, 15
ALL, sub-query, 161, 171
AND vs. OR, precedencerules, 24
ANY, sub-query, 160, 169
Arithmetic, precedence rules, 24
AS statement
Correlation name, 18
Renaming fields, 19
ASCII function, 76
ASIN function, 76
ATAN function, 76
AVG
Datevalue, 44
Function, 43
Null usage, 44

B
Balanced hierarchy, 219
BETWEEN
AGGREGATION function, 70
Predicate, 22
BIGINT function, 76, 266
BLOB function, 77

C
Cartesian Product, 150
CASE expression
Character to Number, 243
Definition, 39
Recursive processing, 231
Sample data creation, usage, 239
Selective column output, 244
UPDATE usage, 40
Wrong sequence, 264
Zero divide (avoid), 41
CAST expression
CASE usage, 41
Definition, 36
CEIL function, 77
CHAR function, 78
Character to Number, 243
Chart making using SQL, 245
CHR function, 80
Circular Reference. See You are lost
Clean hierarchies, 227
CLOB function, 80
COALESCE function, 80, 152
Common table expression
Definition, 28
Full-select clause, 30
CONCAT function, 81, 222

Index

Convergent hierarchy, 218
Correlated sub-query
Definition, 166
NOT EXISTS, 168
CORRELATION function, 45
Correlation name, 18
COS function, 82
COT function, 82
COUNT DISTINCT function
Definition, 45
Null values, 56
COUNT function
Definition, 45
No rows, 46, 138
Null values, 45
COUNT_BIG function, 46
COVARIANCE function, 46
Create Table
Example, 14
Identity Column, 196, 198
Summary Table, 178
CUBE, 133

D
Datain view definition, 14
DATE
AVG calculation, 44
Function, 82
Manipulation, 261
Output order, 264
DAY function, 83
DAY NAME function, 83
DAY OFWEEK function, 84
DAY OFYEAR function, 84
DAY Sfunction, 85
DECIMAL
Function, 85, 244, 266
Multiplication, 25, 99

Declared Global Temporary Table, 27, 34

DECRYPT_BIN function, 86
DECRYPT_CHAR function, 86
Deferred Refresh summary tables, 180
Definition Only summary tables, 180
DEGRESS function, 86

Deletes, counting using triggers, 207
Denormalize data, 250
DENSE_RANK function, 54
DIFFERENCE function, 86

DIGITS function, 87

DISTINCT, 43, 74

Divergent hierarchy, 217

DOUBLE function, 87

E
Efficient triggers, summary tables, 189
ENCRYPT function, 88

281

ESCAPE phrase, 23

EXCEPT, 174

EXISTS, sub-query, 22, 162, 167, 168
EXP function, 88

F
FETCH FIRST clause
Definition, 17
Efficient usage, 64
Stop recursion, 226
FLOAT function, 89, 266
Floating-point numbers, 266
FLOOR function, 89
Fractional date manipulation, 261
Full Outer Join
COALESCE function, 152
Definition, 146
Full-select
Definition, 30
TABLE function, 32
UPDATE usage, 33

G
GENERATE_UNIQUE function, 89, 236
GETHINT function, 90
Global Temporary Table, 27, 34
GROUPBY
CUBE, 133
Definition, 123
GROUPING SETS, 125
Join usage, 138
ORDER BY usage, 137
PARTITION comparison, 73
ROLLUP, 129
GROUPING function, 47, 127
GROUPING SETS, 125

H

HEX function, 91, 122, 244, 267

Hierarchy
Balanced, 219
Convergent, 218
Denormalizing, 227
Divergent, 217
Find loops, 224
Recursive, 218
Summary tables, 227
Triggers, 227

HOUR function, 91

|
Identity column

IDENTITY_VAL_LOCAL function, 201

Restart value, 199
Usage notes, 195

IDENTITY_VAL_LOCAL function, 91, 201, 208

Immediate Refresh summary tables, 181
IN

Predicate, 22

Sub-query, 165, 167
Index on summary table, 185
Inefficient triggers, summary tables, 186
Inner Join, 142
INSERT

282

Graeme Birchall ©

Common table expression, 30
Full-select, 33
Function, 92
INTEGER
Arithmetic, 24
Function, 92
Truncation, 263
INTERSECT, 174

J
Join
Cartesian Product, 150
COALESCE function, 152
DISTINCT usage warning, 43
Full Outer Join, 146
GROUP BY usage, 138
Inner Join, 142
Left Outer Join, 143
Right Outer Join, 145
Syntax, 139
JULIAN_DAY function
Definition, 93
History, 93

L
LCASE function, 95
LEFT function, 95
Left Outer Join, 143
LENGTH function, 96
LIKE predicate
Definition, 23
ESCAPE usage, 23
Varchar usage, 262
LN function, 96
LOCATE function, 96
LOG function, 97
LOG10 function, 97
Lousy Index. See Circular Reference
LTRIM function, 97

M
MAX

Function, 47

Rows, getting, 61

Values, getting, 59, 62
MICROSECOND function, 97
MIDNIGHT_SECONDS function, 98
MIN function, 48
MINUTE function, 98
Missing rows, 248
MOD function, 99
MONTH function, 99
MONTHNAME function, 99
MULITPLY _ALT function, 99
Multiplication, overflow, 99

N

NEXTVAL expression, 204, 208
NODENUMBER function, 100
Normalize data, 249

NOT EXISTS, sub-query, 166, 168
NOT IN, sub-query, 165, 168
NOT predicate, 21

NULLIF function, 100

DB2 UDB V8.1 Cookbook ©

Nulls
CAST expression, 36

COUNT DISTINCT function, 45, 56

COUNT function, 168
Definition, 19
GROUPBY usage, 124
Order sequence, 122
Predicate usage, 24
Ranking, 56

O
OLAP functions
AGGREGATION function, 66
DENSE_RANK function, 54
RANK function, 54
ROW_NUMBER function, 60
OPTIMIZE FOR clause, 64
OR vs. AND, precedence rules, 24
ORDER BY
AGGREGATION function, 68
CONCAT function, 81
Date usage, 264
Definition, 121
FETCH FIRST, 18
GROUP BY usage, 137
Nulls processing, 56, 122
RANK function, 55
ROW_NUMBER function, 60
Quter Join
COALESCE function, 152
Definition, 146
Overflow errors, 99

P

Partition
AGGREGATION function, 73
GROUP BY comparison, 73
RANK function, 57
ROW_NUMBER function, 61

PARTITION function, 100

Percentage calculation, 26

POSSTR function, 101

POWER function, 101

Precedence rules, 24

PREVVAL expression, 204, 208

R
RAISE_ERROR function, 102
RAND function
Description, 102
Predicate usage, 259
Random row selection, 105
Reproducable usage, 103
Reproducible usage, 235
RANGE (AGGREGATION function), 72
RANK function, 54
REAL function, 105
Recursion
Fetch first n rows, 65
Halting processing, 220
How it works, 209
Level (in hierarchy), 213
List children, 212

Index

Multipleinvocations, 215
Normalize data, 249
Stopping, 220
Warning message, 216
When to use, 209
Recursive hierarchy
Definition, 218
Denormalizing, 228, 230
Triggers, 228, 230
Refresh Deferred summary tables, 180
Refresh Immediate summary tables, 181
REGRESSION functions, 48
REPEAT function, 106
REPLACE function, 106, 254
Restart, Identity column, 199
Reversing values, 251
RIGHT function, 107
Right Outer Join, 145
ROLLUP, 129
ROUND function, 107
ROW_NUMBER function, 60
ROWS (AGGREGATION function), 69
RTRIM function, 107

S
SELECT statement
Correlation name, 18
Definition, 15
Full-select, 32
Random row selection, 105
Syntax diagram, 16
Sequence
Create, 203
Multi table usage, 206
NEXTVAL expression, 204
PREVVAL expression, 204
Sequence numbers. See ldentity column
SIGN function, 108
SIN function, 108
SMALLINT function, 108
SOME, sub-query, 160, 169
SOUNDEX function, 108
SPACE function, 109
SQLCACHE_SNAPSHOT function, 110
SQRT function, 110
STDDEV function, 49
Strip
Functions. See LTRIM or RTRIM
Roll your own, 253
Sub-query
Correlated, 166
Error prone, 160
EXISTS usage, 162, 167
IN usage, 165, 167
Multi-field, 167
Nested, 167
SUBSTR function
Chart making, 245
Definition, 111
SUM function, 49, 68
Summary tables
DDL restrictions, 178
Definition Only, 180
Index usage, 185

283

Null data, 186

Recursive hierarchies, 227
Refresh Deferred, 180
Refresh Immediate, 181
Syntax diagram, 178
Triggers - efficient, 189
Triggers - inefficent, 186

T
Table. See Create Table
TABLE function, 32
TABLE_NAME function, 112
TABLE_SCHEMA function, 112
Temporary Table

Common table expression, 28

Full select, 30

Global Declared, 27, 34

TABLE function, 32
Test Data. See Sample Data
Time Series data, 240
TIMESTAMP

Function, 113

Manipulation, 261
TIMESTAMP_FORMAT function, 113
TIMESTAMP_ISO function, 114
TIMESTAMPDIFF function, 114
TRANSLATE function, 115
Triggers

Delete counting, 207

Identity column, 200

Recursive hierarchies, 228, 230

Sequence, 206

Summary tables, 186
TRIM. See LTRIM or RTRIM
TRUNCATE function, 116
Truncation, numeric, 263

)

UCASE function, 117
Unbalanced hierarchy, 219
Uncorrelated sub-query, 166

284

Graeme Birchall ©

Nested, 167
UNION
Precedence Rules, 175
Recursion, 210
UNION ALL, 174
View usage, 176
UPDATE
CASE usage, 40
Full-select, 33

V
VALUE function, 117
VALUES expression
Definition, 37
View usage, 38
VARCHAR function, 117
VARCHAR_FORMAT function, 118
VARIANCE function, 50
VIEW
Datain definition, 14
DDL example, 14, 15, 38
UNION usage, 176

W
WEEK function, 118, 263
WHERE processing, 24
WITH statement
Defintion, 28
Insert usage, 30
MAX values, getting, 62
Multipletables, 29
Recursion, 210
VALUES expression, 37

Y
Y EAR function, 119
You are lost. See Lousy Index

Z
Zero divide (avoid), 41

